-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathpretrain.py
350 lines (264 loc) · 13.3 KB
/
pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data
from torch.utils.data import Dataset
import torchvision.transforms as transforms
from transformers import GPT2Tokenizer, AutoConfig
from transformers import AdamW, get_linear_schedule_with_warmup
import json
from cococaption.pycocotools.coco import COCO
from cococaption.pycocoevalcap.eval import COCOEvalCap
from PIL import Image
from accelerate import Accelerator
from models.gpt import GPT2LMHeadModel
from models.clip_vit import ImageEncoder
from utils.eval_utils import top_filtering
def change_requires_grad(model, req_grad):
for p in model.parameters():
p.requires_grad = req_grad
def load_checkpoint(ckpt_path, epoch):
model_name = 'pretrain_model_{}'.format(str(epoch))
tokenizer_name = 'pretrain_tokenizer_0'
filename = 'ckpt_stats_' + str(epoch) + '.tar'
tokenizer = GPT2Tokenizer.from_pretrained(ckpt_path + tokenizer_name) # load tokenizer
model = GPT2LMHeadModel.from_pretrained(ckpt_path + model_name).to(device) # load model with config
opt = torch.load(ckpt_path + filename)
optimizer = get_optimizer(model, learning_rate)
optimizer.load_state_dict(opt['optimizer_state_dict'])
start_epoch = opt['epoch'] + 1
scheduler_dic = opt['scheduler']
del opt
torch.cuda.empty_cache()
return tokenizer, model, optimizer, scheduler_dic, start_epoch
def save_checkpoint(epoch, unwrapped_model, optimizer, tokenizer, scheduler, ckpt_path, **kwargs):
model_name = 'pretrain_model_{}'.format(str(epoch))
tokenizer_name = 'pretrain_tokenizer_{}'.format(str(epoch))
filename = 'ckpt_stats_' + str(epoch) + '.tar'
if epoch == 0:
tokenizer.save_pretrained(ckpt_path + tokenizer_name) # save tokenizer
unwrapped_model.save_pretrained(ckpt_path + model_name, save_function=accelerator.save)
opt = {'epoch': epoch,
'optimizer_state_dict': optimizer.state_dict(),
'scheduler': scheduler.state_dict(),
**kwargs}
accelerator.save(opt, ckpt_path + filename)
def get_scores(annFile, resFile, save_scores_path):
coco = COCO(annFile)
cocoRes = coco.loadRes(resFile)
cocoEval = COCOEvalCap(coco, cocoRes)
cocoEval.params['image_id'] = cocoRes.getImgIds()
cocoEval.evaluate()
with open(save_scores_path, 'w') as w:
json.dump(cocoEval.eval, w)
return cocoEval.eval['CIDEr']
class PretrainCaptioning(Dataset):
def __init__(self,
all_imgs_folder,
imgs_path,
captions_path,
split,
transform,
tokenizer,
max_seq_len):
self.split = split
self.transform = transform
self.all_imgs_folder = all_imgs_folder
self.images_list = json.load(open(imgs_path, 'r'))
if split == 'train':
self.max_seq_len = max_seq_len # caption (with <bos>, <eos> and padding)
self.tokenizer = tokenizer
self.captions = json.load(open(captions_path, 'r'))
def __getitem__(self, i):
img_subpath = self.images_list[i]
img_path = self.all_imgs_folder + img_subpath
img = Image.open(img_path).convert('RGB')
img = self.transform(img)
if self.split == 'train':
labels = []
text = self.captions[i]
tokens = self.tokenizer.tokenize(text)
tokens = [self.tokenizer.bos_token] + tokens + [self.tokenizer.eos_token]
labels += tokens
if len(tokens) > self.max_seq_len:
tokens = tokens[:self.max_seq_len]
labels = labels[:self.max_seq_len]
seq_len = len(tokens)
padding_len = self.max_seq_len - seq_len
tokens += [self.tokenizer.pad_token] * padding_len
labels += ([-100] * padding_len)
input_ids = self.tokenizer.convert_tokens_to_ids(tokens)
input_ids = torch.tensor(input_ids, dtype=torch.long)
labels = [self.tokenizer.convert_tokens_to_ids(t) if t!=-100 else t for t in labels]
labels = torch.tensor(labels, dtype=torch.long)
if self.split != 'train':
img_id = int(img_subpath.split("_")[-1].split(".")[0].lstrip("0"))
img_id = torch.LongTensor([img_id])
return (img, img_id)
return (img, input_ids, labels)
def __len__(self):
return len(self.images_list)
def sample_sequences(model, tokenizer, loader):
model.eval()
results = []
SPECIAL_TOKENS = ['<|endoftext|>', '<pad>']
special_tokens_ids = tokenizer.convert_tokens_to_ids(SPECIAL_TOKENS)
for i,batch in enumerate(loader):
current_output = []
batch = tuple(input_tensor.to(device) for input_tensor in batch)
img, img_id = batch
img_embeddings = image_encoder(img)
max_len = 20
batch_size = img_embeddings.size(0)
input_ids = torch.LongTensor(batch_size).to(device)
input_ids[:] = tokenizer.convert_tokens_to_ids(tokenizer.bos_token)
input_ids = input_ids.unsqueeze(1) # (batch_size, 1)
with torch.no_grad():
for step in range(max_len + 1):
if step == max_len:
break
outputs = model(input_ids=input_ids,
past_key_values=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
encoder_hidden_states=img_embeddings,
encoder_attention_mask=None,
labels=None,
use_cache=False,
return_dict=True)
lm_logits = outputs.logits
logits = lm_logits[0, -1, :] / temperature
logits = top_filtering(logits, top_k=top_k, top_p=top_p)
probs = F.softmax(logits, dim=-1)
prev = torch.topk(probs, 1)[1] if no_sample else torch.multinomial(probs, 1)
if prev.item() in special_tokens_ids:
break
current_output.append(prev.item())
input_ids = torch.cat((input_ids, prev.unsqueeze(0)), dim = 1)
decoded_sequences = tokenizer.decode(current_output, skip_special_tokens=True).lstrip()
results.append({"image_id": img_id.item(), "caption": decoded_sequences})
print("\rEvaluation: Finished {}/{}".format(i, len(loader)), end=' ')
return results
def get_optimizer(model, learning_rate):
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
'weight_decay': weight_decay},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
'weight_decay': 0.0}]
optimizer = AdamW(optimizer_grouped_parameters, lr=learning_rate)
return optimizer
accelerator = Accelerator()
device = accelerator.device
eval_batch_size = 1
img_size = 224
ckpt_path = 'ckpts/'
caption_save_path = 'cococaption/results/'
annFile = 'cococaption/annotations/captions_val2014.json'
max_seq_len = 70
load_from_epoch = None
no_sample = True
top_k = 0
top_p = 0.9
batch_size = 32 # per GPU. Total batch size: 576
num_train_epochs = 30
weight_decay = 0
learning_rate = 1e-4
gradient_accumulation_steps = 6 # accum_steps = desired_batch_size per GPU / tolerable_batch_size per GPU
start_epoch = 0
temperature = 1
image_encoder = ImageEncoder(device).to(device)
change_requires_grad(image_encoder, False)
if load_from_epoch is None:
tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')
orig_num_tokens = len(tokenizer.encoder)
# add the additional tokens here to avoid changing the tokenizer and model weights for every downstream task
num_new_tokens = tokenizer.add_special_tokens({'pad_token': '<pad>',
'additional_special_tokens': ['<question>', '<answer>', '<explanation>']})
assert len(tokenizer) == orig_num_tokens + num_new_tokens
config = AutoConfig.from_pretrained('distilgpt2')
# Add configs
setattr(config, 'img_size', None)
setattr(config, 'max_seq_len', None)
config.img_size = img_size
config.max_seq_len = max_seq_len
config.add_cross_attention = True
model = GPT2LMHeadModel.from_pretrained('distilgpt2', config = config)
model.resize_token_embeddings(len(tokenizer))
model = model.to(device)
optimizer = get_optimizer(model, learning_rate)
else:
tokenizer, model, optimizer, scheduler_dic, start_epoch = load_checkpoint(ckpt_path, load_from_epoch)
img_transform = transforms.Compose([transforms.Resize((img_size,img_size)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
train_dataset = PretrainCaptioning(all_imgs_folder = 'images/',
imgs_path = 'pretrain_data/corpus_images_train.json',
captions_path = 'pretrain_data/corpus_captions_train.json',
split = 'train',
transform = img_transform,
tokenizer = tokenizer,
max_seq_len = max_seq_len)
train_loader = torch.utils.data.DataLoader(train_dataset,
batch_size = batch_size,
shuffle=True,
pin_memory=True)
test_dataset = PretrainCaptioning(all_imgs_folder = 'images/',
imgs_path = 'pretrain_data/corpus_images_test.json',
captions_path = None,
split = 'test',
transform = img_transform,
tokenizer = None,
max_seq_len = None)
test_loader = torch.utils.data.DataLoader(test_dataset,
batch_size = eval_batch_size,
shuffle=False,
pin_memory=True)
model, optimizer, train_loader = accelerator.prepare(model, optimizer, train_loader)
t_total = (len(train_loader) // gradient_accumulation_steps) * num_train_epochs
warmup_steps = 0 # int(0.10 * t_total)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps, num_training_steps=t_total)
if load_from_epoch is not None:
scheduler.load_state_dict(scheduler_dic)
for epoch in range(start_epoch, num_train_epochs):
model.train()
accum_loss = 0
for step, batch in enumerate(train_loader):
batch = tuple(input_tensor.to(device) for input_tensor in batch)
img, input_ids, labels = batch
img_embeddings = image_encoder(img)
outputs = model(input_ids=input_ids,
past_key_values=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
encoder_hidden_states=img_embeddings,
encoder_attention_mask=None,
labels=labels,
use_cache=False,
return_dict=True)
loss = outputs.loss
loss = loss / gradient_accumulation_steps
accelerator.backward(loss)
accum_loss += loss.item()
if step % gradient_accumulation_steps == 0 or step == len(train_loader) - 1:
optimizer.step()
scheduler.step()
optimizer.zero_grad()
accelerator.print("\rEpoch {} / {}, Iter {} / {}, Loss: {:.3f}".format(epoch,
num_train_epochs,
step, len(train_loader),
accum_loss),
end=' ')
accum_loss = 0
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
save_checkpoint(epoch, unwrapped_model, optimizer, tokenizer, scheduler, ckpt_path)
if accelerator.is_main_process:
results = sample_sequences(unwrapped_model, tokenizer, test_loader)
resFile = caption_save_path + 'captions_' + str(epoch) + '.json'
save_scores_path = caption_save_path + 'scores_' + str(epoch) + '.json'
with open(resFile, 'w') as w:
json.dump(results, w)
get_scores(annFile, resFile, save_scores_path)