-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_trt.py
149 lines (127 loc) · 4.66 KB
/
demo_trt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import time
import os
import cv2
import numpy as np
import tensorrt as trt
import trt_common
from tool.utils import post_processing, plot_boxes_cv2
from tool.segment_utils import colorize, overlay
CLASS_NAMES = [
"car", "bus", "person",
"bike", "truck", "motor",
"train", "rider",
"traffic_sign", "traffic_light",
]
TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
trt.init_libnvinfer_plugins(TRT_LOGGER, "")
def get_engine(engine_file_path):
print(f"\033[32mReading engine from file {engine_file_path}\033[0m")
with open(engine_file_path, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime:
return runtime.deserialize_cuda_engine(f.read())
def main(engine_path: str,
input_height: int, input_width: int,
video_path: str,
conf_thresh: float, nms_thresh: float
):
if not os.path.exists(video_path):
raise ValueError(f"{video_path} not exist.")
cap = cv2.VideoCapture(video_path)
engine = get_engine(engine_path)
context = engine.create_execution_context()
inputs, outputs, bindings, stream, output_names = trt_common.allocate_buffers(engine)
boxes_index = output_names.index("boxes")
confs_index = output_names.index("confs")
segmentation = "seg" in output_names
if segmentation:
seg_index = output_names.index("seg")
while cap.isOpened():
res, img = cap.read()
if res is False:
break
# Pre-processing
t_pre = time.perf_counter()
# resize and normalize
blob = cv2.resize(img, (input_width, input_height)).astype(np.float32) / 255.0
# HWC -> NCHW
blob = blob.transpose(2, 0, 1)[None, :, :, :]
dt_pre = time.perf_counter() - t_pre
# inference
t_inf = time.perf_counter()
inputs[0].host = np.ascontiguousarray(blob)
results = trt_common.do_inference_v2(
context, bindings=bindings, inputs=inputs, outputs=outputs, stream=stream
)
dt_inf = time.perf_counter() - t_inf
# Post-processing
t_post = time.perf_counter()
boxes = results[boxes_index].reshape(1, -1, 1, 4)
confs = results[confs_index].reshape(1, -1, len(CLASS_NAMES))
boxes = post_processing(img, conf_thresh, nms_thresh, boxes, confs)
dt_post = time.perf_counter() - t_post
# Visualization
t_vis = time.perf_counter()
if segmentation:
seg_img = results[seg_index].reshape(int(input_height*0.5), int(input_width*0.5)).astype(np.uint8)
colored_seg = colorize(seg_img)
overlayed = overlay(img, colored_seg)
drawn = plot_boxes_cv2(overlayed, boxes[0], class_names=CLASS_NAMES)
else:
drawn = plot_boxes_cv2(img, boxes[0], class_names=CLASS_NAMES)
dt_vis = time.perf_counter() - t_vis
print(f"preprocessing: {dt_pre:.3f}s")
print(f"inference: {dt_inf:.3f}s")
print(f"postprocessing: {dt_post:.3f}s")
print(f"visualization: {dt_vis:.3f}s")
print("")
cv2.imshow("lightNet-ONNX-trt", drawn)
key = cv2.waitKey(10)
if key == ord("q"):
break
cv2.destroyAllWindows()
cap.release()
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument(
"-e",
"--engine_path",
type=str,
# default="lightNet-BDD100K-1280x960.engine",
# default="lightNet-BDD100K-1280x960-chPruning.engine",
default="lightNet-BDD100K-det-semaseg-1280x960.engine",
# default="lightNet-BDD100K-chPruning-det-semaseg-1280x960.engine",
help="TensorRT engine file path.")
parser.add_argument(
"-ih",
"--input_height",
type=int,
default=960,
help="Model input height.")
parser.add_argument(
"-iw",
"--input_width",
type=int,
default=1280,
help="Model input width.")
parser.add_argument(
"-v",
"--video_path",
type=str,
default="/dev/video0",
# default="./MOT16-14-raw.webm",
help="input video path.")
parser.add_argument('--conf_thresh',
type=float,
default=0.45,
help="confidence threshold. default 0.45")
parser.add_argument('--nms_thresh',
type=float,
default=0.30,
help="nms threshold. default 0.30")
args = parser.parse_args()
main(
args.engine_path,
args.input_height, args.input_width,
args.video_path,
args.conf_thresh, args.nms_thresh,
)