-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathlprmix.py
308 lines (263 loc) · 14.2 KB
/
lprmix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
"""
Author: fanghong
edited: 2019.5.12
"""
#coding=utf-8
from cv2 import dnn
import cv2
from hyperlpr_py3 import pipline as pp
import time
import argparse
import numpy as np
from PIL import Image, ImageDraw, ImageFont
import os
import traceback
Sheng = ["京", "沪", "津", "渝", "冀", "晋", "蒙", "辽", "吉", "黑", "苏", "浙", "皖", "闽", "赣", "鲁", "豫", "鄂", "湘", "粤", "桂",
"琼", "川", "贵", "云", "藏", "陕", "甘", "青", "宁", "新"]
plateSheng = {"京":"JING","津":"JINA","沪":"HU","渝":"YUA","蒙":"MENG","新":"XIN","藏":"ZANG","宁":"NING",
"桂":"GUIA","黑":"HEI","吉":"JIB","辽":"LIAO","晋":"JINB","冀":"JIA","青":"QING","鲁":"LU",
"豫":"YUB","苏":"SU","皖":"WAN","浙":"ZHE","闽":"MIN","赣":"GANA","湘":"XIANG","鄂":"E",
"粤":"YUE","琼":"QIONG","甘":"GANB","陕":"SHAN","贵":"GUIB","云":"YUN","川":"CHUAN"}
plateTypeName = ["蓝", "黄", "绿", "白", "黑 "]
fontC = ImageFont.truetype("Font/platech.ttf", 30, 0) # 加载中文字体,38表示字体大小,0表示unicode编码
inWidth = 480 # 480 # from ssd.prototxt ,540,960,720,640,768,设置图片宽度
inHeight = 640 # 640 ,720,1280,960,480,1024
WHRatio = inWidth / float(inHeight) # 计算宽高比
inScaleFactor = 0.007843 # 1/127.5
meanVal = 127.5
classNames = ('background',
'plate')
net = dnn.readNetFromCaffe("model/MobileNetSSD_test.prototxt","model/lpr.caffemodel") # 读入模型文件
net.setPreferableBackend(dnn.DNN_BACKEND_OPENCV)
net.setPreferableTarget(dnn.DNN_TARGET_CPU) # 使用cpu
# net.setPreferableTarget(dnn.DNN_TARGET_OPENCL) # 启用GPU OPENCL 加速 ,默认FP32
# net.setPreferableTarget(dnn.DNN_TARGET_OPENCL_FP16) # only for intel xianka test faster speed
# 画车牌定位框及识别出来的车牌字符,返回标记过的图片
def drawPred(frame, label, left, top, right, bottom):
# 画车牌定位边框.左上点,右下点,红色,边框粗细:2
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
# 画车牌字符
img = Image.fromarray(frame)
draw = ImageDraw.Draw(img)
draw.text((left + 1, top - 38), label, (0, 0, 255), font=fontC) # 车牌框上方红色汉字
imagex = np.array(img)
return imagex
# 判断车牌字符是否有效
def isValidPlate(plate,confidence):
# 置信度大于0.8,长度等于7或8(绿牌) , 车牌第一个字符应是省名
if confidence > 0.8 and (len(plate) == 7 or len(plate) == 8) and plate[0] in Sheng:
return True
return False
# 对车牌进行自上而下,自左而右的排序输出
def sortPlate(res):
if res and len(res) <= 1: #结果只有一张或无车牌,则直接返回
return res
res2 = sorted(res, key=lambda r: r[3]) # 根据坐标(y,x)自小到大排序,对应车牌自上而下
# print(res2)
return res2
# 对输入图片进行检测,返回结果:绘制了车牌定位框的图,检测结果(车牌,车牌颜色,车牌字符置信度等)
def detect(frame):
frame_resized = cv2.resize(frame, (inWidth, inHeight)); # 将原图缩放到指定高宽,并显示
# cv2.imshow("test", frame_resized)
# cv2.waitKey(0)
heightFactor = frame.shape[0] / inHeight # 计算高度缩放比例
widthFactor = frame.shape[1] / inWidth # 计算宽度缩放比例
# t0 = time.time()
# 读取图片,并按指定参数缩放
blob = dnn.blobFromImage(frame_resized, inScaleFactor, (inWidth, inHeight), meanVal)
net.setInput(blob) # 设置好图片输出
detections = net.forward() # ssd神经网处理图片,返回结果
# print("车牌定位时间:", time.time() - t0)
cols = frame_resized.shape[1] # 宽度,列
rows = frame_resized.shape[0] # 高度,行
res_set = [] # 检测结果
framedrawed = frame
# 循环遍历处理定位到的车牌
for i in range(detections.shape[2]):
confidence = detections[0, 0, i, 2] # 提取出车牌定位置信度
if confidence > 0.2:
# class_id = int(detections[0, 0, i, 1])
xLeftBottom = int(detections[0, 0, i, 3] * cols) # 被实际检测图(缩放过的)中车牌框左上点横坐标
yLeftBottom = int(detections[0, 0, i, 4] * rows)
xRightTop = int(detections[0, 0, i, 5] * cols) # 被实际检测图中车牌框右下点横坐标
yRightTop = int(detections[0, 0, i, 6] * rows)
xLeftBottom_ = int(widthFactor * xLeftBottom); # 原始图中车牌框左上点横坐标
yLeftBottom_ = int(heightFactor * yLeftBottom);
xRightTop_ = int(widthFactor * xRightTop);
yRightTop_ = int(heightFactor * yRightTop);
# print("y1:",yLeftBottom_, "y2:",yRightTop_, "x1:",xLeftBottom_, "x2:", xRightTop_) # 输出车牌在原图中位置信息
# 适当扩大车牌定位框
h = yRightTop_ - yLeftBottom_
w = xRightTop_ - xLeftBottom_
yLeftBottom_ -= int(h * 0.5)
yRightTop_ += int(h * 0.5)
xLeftBottom_ -= int(w * 0.14)
xRightTop_ += int(w * 0.14)
image_sub = frame[yLeftBottom_:yRightTop_,xLeftBottom_:xRightTop_] # 截取原图车牌定位区域
# 调整车牌到统一大小
plate = image_sub
# print(plate.shape[0],plate.shape[1])
if plate.shape[0] > 36:
plate = cv2.resize(image_sub, (136, 36 * 2))
else:
plate = cv2.resize(image_sub, (136, 36 ))
# cv2.imshow("test", plate)
# cv2.waitKey(0)
# 判断车牌颜色
plate_type = pp.td.SimplePredict(plate)
plate_color = plateTypeName[plate_type]
if (plate_type > 0) and (plate_type < 5):
plate = cv2.bitwise_not(plate)
# 精定位,倾斜校正
image_rgb = pp.fm.findContoursAndDrawBoundingBox(plate)
# cv2.imshow("test", image_rgb);
# cv2.waitKey(0)
# 车牌左右边界修正
image_rgb = pp.fv.finemappingVertical(image_rgb)
# cv2.imshow("test", image_rgb);
# cv2.waitKey(0)
# 车牌字符识别
# t0 = time.time()
e2e_plate, e2e_confidence = pp.e2e.recognizeOne(image_rgb)
# print("e2e:", e2e_plate, e2e_confidence, plate_color) #车牌字符判断
# print("车牌字符识别时间:",time.time()-t0)
if isValidPlate(e2e_plate,e2e_confidence): # 判断是否是有效车牌
# 在原图中绘制定位框及车牌信息,传入定位框左上点和右下点xy坐标
framedrawed = drawPred(framedrawed, e2e_plate, xLeftBottom_, yLeftBottom_, xRightTop_, yRightTop_)
res_set.append([e2e_plate, # 结果车牌号
plate_color, # 车牌颜色
e2e_confidence, # 车牌字符置信度
(yLeftBottom, xLeftBottom)]) # 车牌原始定位框左上点坐标(y,x)
return framedrawed, res_set # 返回绘制的图片,检测结果
# 在输入图片中定位并识别车牌字符,返回绘制的图片、检测结果及定位识别状态(如果定位失败-1,车牌字符识别失败-2,成功1)
def SimpleRecognizePlate(image):
# t0 = time.time()
# 粗定位
images = pp.detect.detectPlateRough(
image, image.shape[0], top_bottom_padding_rate=0.02)
# t1 = time.time()-t0
# print("初定位时间:", t1)
if len(images)<1: # 未定位到车牌,返回-2
return image, [], -2
res_set = []
# 循环遍历发现的每个车牌
for j, plate in enumerate(images):
plate, rect, origin_plate = plate
# 调整车牌到统一大小
plate = cv2.resize(plate, (136, 36 * 2))
# cv2.imshow("test", plate);
# cv2.waitKey(0)
# 判断车牌颜色
plate_type = pp.td.SimplePredict(plate)
plate_color = plateTypeName[plate_type]
if (plate_type > 0) and (plate_type < 5):
plate = cv2.bitwise_not(plate)
# 精定位,倾斜校正
# t2 = time.time()
image_rgb = pp.fm.findContoursAndDrawBoundingBox(plate)
# cv2.imshow("test", image_rgb);
# cv2.waitKey(0);
# print("精定位时间:", time.time() - t2)
# 车牌左右边界修正
# t3 = time.time()
image_rgb = pp.fv.finemappingVertical(image_rgb)
# print("左右修正时间:", time.time() - t3)
# e2e 车牌字符识别
# t4 = time.time()
e2e_plate, e2e_confidence = pp.e2e.recognizeOne(image_rgb)
# print("e2e识别时间:", time.time() - t4)
# t5 = time.time() - t0
# print(e2e_plate, e2e_confidence, t5, "s")
if isValidPlate(e2e_plate, e2e_confidence): # 判断是否是有效车牌
# 在原图中绘制定位框及车牌信息,传入定位框左上点和右下点xy坐标
image = drawPred(image, e2e_plate, int(rect[0]),int(rect[1]),int(rect[0]+rect[2]),int(rect[1]+rect[3]))
# 设置检测结果
res_set.append([e2e_plate, # 结果车牌号
plate_color, # 车牌颜色
e2e_confidence, # 车牌字符置信度
(rect[1], rect[0])]) # 车牌定位框左上点坐标(y,x)
if len(res_set)<1: # 未能识别到车牌,返回-1
return image, [], -1
return image, res_set, 1
parser = argparse.ArgumentParser(description='车牌识别')
parser.add_argument('--sdir', help='图片输入路径.')
parser.add_argument('--rdir', help='识别结果输出路径.')
parser.add_argument('--mode', help='设置识别模式,1平衡 2速度优先 3精度优先.')
args = parser.parse_args()
# 默认参数: --mode 1 --sdir c:/test-imgs/ --rdir c:/test-results/
sdir = "./test-imgs/" # 图片读入路径
rdir = "./test-results/"
mode = "1"
try:
if args.sdir:
sdir = args.sdir
if args.rdir:
rdir = args.rdir
if args.mode:
mode = args.mode
fw = open(rdir+"No14007mresults.txt", 'w+') # 以覆盖写方式打开文件,如果不存在,则新建一个
cv2.namedWindow("display", cv2.WINDOW_NORMAL) #cv2.WINDOW_AUTOSIZE
# 循环遍历文件夹下所有的图片文件
for f in os.listdir(sdir):
try:
if f.endswith(".jpg") or f.endswith("JPG") or f.endswith("png"):
# print("---------"+f+"----------------")
cpp = sdir + "/" + f # 生成完整路径
image = cv2.imdecode(np.fromfile(cpp, dtype=np.uint8), -1) # 读入图片文件,支持中文名
# 固定高度,等比例缩放原图片
h = 1024 # 720 ,image.shape[0] ,指定缩放高度
scale = image.shape[1] / float(image.shape[0]) # 原图宽高比
if scale > 1: # 原图片宽大于高
h = 720 # 缩小高度
w = int(scale * h) # 缩放后的宽
image = cv2.resize(image, (w, h)) # 将原图像缩放到指定高度,保持原图像高宽比
if mode == "1":
# 先使用harr算法定位车牌
t0 = time.time()
framedrawed, res,status = SimpleRecognizePlate(image) # 针对缩放后的图片,检测识别车牌;返回的是缩放后的图片
tlabel = '%.0f ms' % ((time.time() - t0) * 1000)
if status<0: # 如果haar算法定位识别失败,则使用ssd算法,注意输入图片已被缩放
# print("use ssd")
t0 = time.time()
framedrawed,res = detect(image) # 识别图片,返回的是绘制的图片
tlabel = '%.0f ms' % ((time.time()-t0)*1000)
elif mode =="2": # harr定位
t0 = time.time()
framedrawed, res ,status= SimpleRecognizePlate(image) # 针对缩放后的图片,检测识别车牌;返回的是缩放后的图片
tlabel = '%.0f ms' % ((time.time() - t0) * 1000)
else: # ssd定位
inWidth = 720 # 480 # from ssd.prototxt ,540,960,720,640,768,设置图片宽度
inHeight = 960 # 640 ,720,1280,960,480,1024
t0 = time.time()
framedrawed, res = detect(image) # ssd定位 识别图片
tlabel = '%.0f ms' % ((time.time() - t0) * 1000)
# 根据车牌位置,自上而下,自左而右排序
res = sortPlate(res)
# 输出车牌检测信息
info = f+"\n" # 输出信息,文件名+换行符
# 循环遍历检测结果,将车牌省名替换为相应拼音
for r in res:
py = plateSheng[r[0][0]] # 获取结果中车牌的第一个字符省名,获取省名对应的拼音
plate = r[0].replace(r[0][0],py) # 将省名替换为拼音
info = info + plate + "\n" # 拼接结果字符串
fw.write(info) # 写入检测信息到结果文本文件
#cv2.imwrite(rdir+f, framedrawed.astype(np.uint8)) # 保存图片
print(info[:-1]) # 屏幕输出结果
print(tlabel) # 输出处理时间
# img2 = cv2.resize(framedrawed, (0, 0), fx=0.25, fy=0.25)
cv2.imshow("display",framedrawed)
# cv2.waitKey(0)
if cv2.waitKey(1) & 0xFF == ord('q'): # 图片窗口等待击键1ms,如果是q,则退出程序
break
except Exception as e:
print(traceback.format_exc()) # 输出异常信息,调试用,发布时应注释掉
continue # 出现异常则继续循环读取
fw.close()
cv2.destroyAllWindows()
print("处理结束 ! 按任意键退出")
c = input()
print("退出")
except Exception as e:
print("程序出现异常,按任意键退出,请检查命令行参数等是否正确,命令行加参数 -h 获取使用帮助")
c = input()
print("退出")