Skip to content

Latest commit

 

History

History
37 lines (26 loc) · 1.59 KB

README.md

File metadata and controls

37 lines (26 loc) · 1.59 KB

Lightplane Examples

The examples folder showcases uses of Lightplane Renderer and Splatter.

Jupyter Notebooks

Getting started

example_1_render_splatter.ipynb demonstrates:

  1. How to set up a simple Renderer object and render a voxel grid representing a randomly-colored 3D sphere.
  2. How to set up a Splatter and unproject random image features to a triplane.

Simple single-scene reconstruction

example_2_fit_rendered_mesh.ipynb fits a triplane or a voxel grid given a set of posed RGB images of a cow mesh. The example requires PyTorch3D installed.

Single-scene reconstruction

fit_single_scene contains a more-advanced training loop implementing fitting of a triplane or a voxel grid given a set of posed RGB images.

Example run:

cd ${LIGHTPLANE_ROOT}/examples/
bash data_download.sh

python ./fit_single_scene.py --config config/synthetic_overfit.json

Supported datasets

The example provides scripts to download and data-load existing datasets. A specific dataset can be selected by setting the dataset_type argument to one of:

  • "nerf": NeRF dataset
  • "llff": LLFF dataset
  • "nsvf": NSVF dataset
  • "co3d": CO3Dv2 dataset
  • "auto": Attempts to automatically infer the dataset type based on the --datadir argument.

The data_download.sh script can be used to download some of the latter datasets: "nerf", "llff".

Please refer to config_util.py for the full list of configuration arguments.