This repository has been archived by the owner on Oct 31, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathtrain.py
375 lines (332 loc) · 17.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
""" Training routine for 3D object detection on SUN RGB-D with VoteNet/ImVoteNet.
Sample usage:
python train.py --use_imvotenet --log_dir log_imvotenet
To use Tensorboard (need to install TensorFlow):
At server:
python -m tensorboard.main --logdir=<log_dir_name> --port=6006
At local machine:
ssh -L 1237:localhost:6006 <server_name>
Then go to local browser and type:
localhost:1237
"""
import os
import sys
import numpy as np
from datetime import datetime
import argparse
import importlib
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.utils.data import DataLoader
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
ROOT_DIR = BASE_DIR
sys.path.append(os.path.join(ROOT_DIR, 'utils'))
sys.path.append(os.path.join(ROOT_DIR, 'pointnet2'))
sys.path.append(os.path.join(ROOT_DIR, 'models'))
from pytorch_utils import BNMomentumScheduler
from tf_visualizer import Visualizer as TfVisualizer
from ap_helper import APCalculator, parse_predictions, parse_groundtruths
parser = argparse.ArgumentParser()
# ImVoteNet related options
parser.add_argument('--use_imvotenet', action='store_true', help='Use ImVoteNet (instead of VoteNet) with RGB.')
parser.add_argument('--max_imvote_per_pixel', type=int, default=3, help='Maximum number of image votes per pixel [default: 3]')
parser.add_argument('--tower_weights', default='0.3,0.3,0.4', help='Tower weights for img_only, pc_only and pc_img [default: 0.3,0.3,0.4]')
# Shared options with VoteNet
parser.add_argument('--checkpoint_path', default=None, help='Model checkpoint path [default: None]')
parser.add_argument('--log_dir', default='log', help='Dump dir to save model checkpoint [default: log]')
parser.add_argument('--dump_dir', default=None, help='Dump dir to save sample outputs [default: None]')
parser.add_argument('--num_point', type=int, default=20000, help='Point Number [default: 20000]')
parser.add_argument('--num_target', type=int, default=256, help='Proposal number [default: 256]')
parser.add_argument('--vote_factor', type=int, default=1, help='Vote factor [default: 1]')
parser.add_argument('--cluster_sampling', default='vote_fps', help='Sampling strategy for vote clusters: vote_fps, seed_fps, random [default: vote_fps]')
parser.add_argument('--ap_iou_thresh', type=float, default=0.25, help='AP IoU threshold [default: 0.25]')
parser.add_argument('--batch_size', type=int, default=8, help='Batch Size during training [default: 8]')
parser.add_argument('--learning_rate', type=float, default=0.001, help='Initial learning rate [default: 0.001]')
parser.add_argument('--weight_decay', type=float, default=0, help='Optimization L2 weight decay [default: 0]')
parser.add_argument('--bn_decay_step', type=int, default=20, help='Period of BN decay (in epochs) [default: 20]')
parser.add_argument('--bn_decay_rate', type=float, default=0.5, help='Decay rate for BN decay [default: 0.5]')
parser.add_argument('--lr_decay_steps', default='80,120,160', help='When to decay the learning rate (in epochs) [default: 80,120,160]')
parser.add_argument('--max_epoch', type=int, default=180, help='Epoch to run [default: 180]')
parser.add_argument('--lr_decay_rates', default='0.1,0.1,0.1', help='Decay rates for lr decay [default: 0.1,0.1,0.1]')
parser.add_argument('--no_height', action='store_true', help='Do NOT use height signal in input.')
parser.add_argument('--use_color', action='store_true', help='Use RGB color in input.')
parser.add_argument('--use_sunrgbd_v2', action='store_true', help='Use V2 box labels for SUN RGB-D dataset')
parser.add_argument('--overwrite', action='store_true', help='Overwrite existing log and dump folders.')
parser.add_argument('--dump_results', action='store_true', help='Dump results.')
parser.add_argument('--num_workers', type=int, default=4, help='Number of works for loading training data [default: 4]')
FLAGS = parser.parse_args()
# ------------------------------------------------------------------------- GLOBAL CONFIG BEG
BATCH_SIZE = FLAGS.batch_size
NUM_POINT = FLAGS.num_point
MAX_EPOCH = FLAGS.max_epoch
BASE_LEARNING_RATE = FLAGS.learning_rate
BN_DECAY_STEP = FLAGS.bn_decay_step
BN_DECAY_RATE = FLAGS.bn_decay_rate
LR_DECAY_STEPS = [int(x) for x in FLAGS.lr_decay_steps.split(',')]
LR_DECAY_RATES = [float(x) for x in FLAGS.lr_decay_rates.split(',')]
assert(len(LR_DECAY_STEPS)==len(LR_DECAY_RATES))
LOG_DIR = FLAGS.log_dir
DEFAULT_DUMP_DIR = os.path.join(BASE_DIR, os.path.basename(LOG_DIR))
DUMP_DIR = FLAGS.dump_dir if FLAGS.dump_dir is not None else DEFAULT_DUMP_DIR
DEFAULT_CHECKPOINT_PATH = os.path.join(LOG_DIR, 'checkpoint.tar')
CHECKPOINT_PATH = FLAGS.checkpoint_path if FLAGS.checkpoint_path is not None \
else DEFAULT_CHECKPOINT_PATH
FLAGS.DUMP_DIR = DUMP_DIR
# Setting tower weights
if FLAGS.use_imvotenet:
KEY_PREFIX_LIST = ['img_only_', 'pc_only_', 'pc_img_']
weights = [float(x) for x in FLAGS.tower_weights.split(',')]
TOWER_WEIGHTS = {'img_only_weight': weights[0], 'pc_only_weight': weights[1], 'pc_img_weight': weights[2]}
print('Tower weights', TOWER_WEIGHTS)
else:
KEY_PREFIX_LIST = ['pc_only_']
TOWER_WEIGHTS = {'pc_only_weight': 1.0}
# Prepare LOG_DIR and DUMP_DIR
if os.path.exists(LOG_DIR) and FLAGS.overwrite:
print('Log folder %s already exists. Are you sure to overwrite? (Y/N)'%(LOG_DIR))
c = input()
if c == 'n' or c == 'N':
print('Exiting..')
exit()
elif c == 'y' or c == 'Y':
print('Overwrite the files in the log and dump folers...')
os.system('rm -r %s %s'%(LOG_DIR, DUMP_DIR))
if not os.path.exists(LOG_DIR):
os.mkdir(LOG_DIR)
LOG_FOUT = open(os.path.join(LOG_DIR, 'log_train.txt'), 'a')
LOG_FOUT.write(str(FLAGS)+'\n')
def log_string(out_str):
LOG_FOUT.write(out_str+'\n')
LOG_FOUT.flush()
print(out_str)
if not os.path.exists(DUMP_DIR): os.mkdir(DUMP_DIR)
# Init datasets and dataloaders
def my_worker_init_fn(worker_id):
np.random.seed(np.random.get_state()[1][0] + worker_id)
# Create Dataset and Dataloader
sys.path.append(os.path.join(ROOT_DIR, 'sunrgbd'))
from sunrgbd_detection_dataset import SunrgbdDetectionVotesDataset, MAX_NUM_OBJ
from model_util_sunrgbd import SunrgbdDatasetConfig
DATASET_CONFIG = SunrgbdDatasetConfig()
TRAIN_DATASET = SunrgbdDetectionVotesDataset('train',
num_points=NUM_POINT,
augment=True,
use_color=FLAGS.use_color,
use_height=(not FLAGS.no_height),
use_imvote=FLAGS.use_imvotenet,
max_imvote_per_pixel=FLAGS.max_imvote_per_pixel,
use_v1=(not FLAGS.use_sunrgbd_v2))
TEST_DATASET = SunrgbdDetectionVotesDataset('val',
num_points=NUM_POINT,
augment=False,
use_color=FLAGS.use_color,
use_height=(not FLAGS.no_height),
use_imvote=FLAGS.use_imvotenet,
max_imvote_per_pixel=FLAGS.max_imvote_per_pixel,
use_v1=(not FLAGS.use_sunrgbd_v2))
print(len(TRAIN_DATASET), len(TEST_DATASET))
TRAIN_DATALOADER = DataLoader(TRAIN_DATASET, batch_size=BATCH_SIZE,
shuffle=True, num_workers=FLAGS.num_workers, worker_init_fn=my_worker_init_fn)
TEST_DATALOADER = DataLoader(TEST_DATASET, batch_size=BATCH_SIZE,
shuffle=False, num_workers=FLAGS.num_workers, worker_init_fn=my_worker_init_fn)
print(len(TRAIN_DATALOADER), len(TEST_DATALOADER))
# Init the model and optimzier
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
num_input_channel = int(FLAGS.use_color)*3 + int(not FLAGS.no_height)*1
if FLAGS.use_imvotenet:
MODEL = importlib.import_module('imvotenet')
net = MODEL.ImVoteNet(num_class=DATASET_CONFIG.num_class,
num_heading_bin=DATASET_CONFIG.num_heading_bin,
num_size_cluster=DATASET_CONFIG.num_size_cluster,
mean_size_arr=DATASET_CONFIG.mean_size_arr,
num_proposal=FLAGS.num_target,
input_feature_dim=num_input_channel,
vote_factor=FLAGS.vote_factor,
sampling=FLAGS.cluster_sampling,
max_imvote_per_pixel=FLAGS.max_imvote_per_pixel,
image_feature_dim=TRAIN_DATASET.image_feature_dim)
else:
MODEL = importlib.import_module('votenet')
net = MODEL.VoteNet(num_class=DATASET_CONFIG.num_class,
num_heading_bin=DATASET_CONFIG.num_heading_bin,
num_size_cluster=DATASET_CONFIG.num_size_cluster,
mean_size_arr=DATASET_CONFIG.mean_size_arr,
num_proposal=FLAGS.num_target,
input_feature_dim=num_input_channel,
vote_factor=FLAGS.vote_factor,
sampling=FLAGS.cluster_sampling)
if torch.cuda.device_count() > 1:
log_string("Let's use %d GPUs!" % (torch.cuda.device_count()))
# dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
net = nn.DataParallel(net)
net.to(device)
criterion = MODEL.get_loss
# Load the Adam optimizer
optimizer = optim.Adam(net.parameters(), lr=BASE_LEARNING_RATE, weight_decay=FLAGS.weight_decay)
# Load checkpoint if there is any
it = -1 # for the initialize value of `LambdaLR` and `BNMomentumScheduler`
start_epoch = 0
if CHECKPOINT_PATH is not None and os.path.isfile(CHECKPOINT_PATH):
checkpoint = torch.load(CHECKPOINT_PATH)
net.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
start_epoch = checkpoint['epoch']
log_string("-> loaded checkpoint %s (epoch: %d)"%(CHECKPOINT_PATH, start_epoch))
# Decay Batchnorm momentum from 0.5 to 0.999
# note: pytorch's BN momentum (default 0.1)= 1 - tensorflow's BN momentum
BN_MOMENTUM_INIT = 0.5
BN_MOMENTUM_MAX = 0.001
bn_lbmd = lambda it: max(BN_MOMENTUM_INIT * BN_DECAY_RATE**(int(it / BN_DECAY_STEP)), BN_MOMENTUM_MAX)
bnm_scheduler = BNMomentumScheduler(net, bn_lambda=bn_lbmd, last_epoch=start_epoch-1)
def get_current_lr(epoch):
lr = BASE_LEARNING_RATE
for i,lr_decay_epoch in enumerate(LR_DECAY_STEPS):
if epoch >= lr_decay_epoch:
lr *= LR_DECAY_RATES[i]
return lr
def adjust_learning_rate(optimizer, epoch):
lr = get_current_lr(epoch)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
# TFBoard Visualizers
TRAIN_VISUALIZER = TfVisualizer(FLAGS, 'train')
TEST_VISUALIZER = TfVisualizer(FLAGS, 'test')
# Used for AP calculation
CONFIG_DICT = {'remove_empty_box':False, 'use_3d_nms':True,
'nms_iou':0.25, 'use_old_type_nms':False, 'cls_nms':True,
'per_class_proposal': True, 'conf_thresh':0.05,
'dataset_config':DATASET_CONFIG}
# ------------------------------------------------------------------------- GLOBAL CONFIG END
def train_one_epoch():
stat_dict = {} # collect statistics
adjust_learning_rate(optimizer, EPOCH_CNT)
bnm_scheduler.step() # decay BN momentum
net.train() # set model to training mode
for batch_idx, batch_data_label in enumerate(TRAIN_DATALOADER):
for key in batch_data_label:
batch_data_label[key] = batch_data_label[key].to(device)
# Forward pass
optimizer.zero_grad()
inputs = {'point_clouds': batch_data_label['point_clouds']}
if FLAGS.use_imvotenet:
inputs.update({'scale': batch_data_label['scale'],
'calib_K': batch_data_label['calib_K'],
'calib_Rtilt': batch_data_label['calib_Rtilt'],
'cls_score_feats': batch_data_label['cls_score_feats'],
'full_img_votes_1d': batch_data_label['full_img_votes_1d'],
'full_img_1d': batch_data_label['full_img_1d'],
'full_img_width': batch_data_label['full_img_width'],
})
end_points = net(inputs)
# Compute loss and gradients, update parameters.
for key in batch_data_label:
if key not in end_points:
end_points[key] = batch_data_label[key]
loss, end_points = criterion(end_points, DATASET_CONFIG, KEY_PREFIX_LIST, TOWER_WEIGHTS)
loss.backward()
optimizer.step()
# Accumulate statistics and print out
for key in end_points:
if 'loss' in key or 'acc' in key or 'ratio' in key:
if key not in stat_dict: stat_dict[key] = 0
stat_dict[key] += end_points[key].item()
batch_interval = 10
if (batch_idx+1) % batch_interval == 0:
log_string(' ---- batch: %03d ----' % (batch_idx+1))
TRAIN_VISUALIZER.log_scalars({key:stat_dict[key]/batch_interval for key in stat_dict},
(EPOCH_CNT*len(TRAIN_DATALOADER)+batch_idx)*BATCH_SIZE)
output_str = "batch id: %d " % batch_idx
for key_prefix in KEY_PREFIX_LIST:
output_str += '%s: %f '%(key_prefix+'loss',
stat_dict[key_prefix+'loss']/batch_interval)
log_string(output_str)
for key in sorted(stat_dict.keys()):
stat_dict[key] = 0
def evaluate_one_epoch():
stat_dict = {} # collect statistics
ap_calculator_dict = {}
for key_prefix in KEY_PREFIX_LIST:
ap_calculator_dict[key_prefix+'ap_calculator'] = APCalculator(ap_iou_thresh=FLAGS.ap_iou_thresh,
class2type_map=DATASET_CONFIG.class2type)
net.eval() # set model to eval mode (for bn and dp)
for batch_idx, batch_data_label in enumerate(TEST_DATALOADER):
if batch_idx % 10 == 0:
print('Eval batch: %d'%(batch_idx))
for key in batch_data_label:
batch_data_label[key] = batch_data_label[key].to(device)
# Forward pass
inputs = {'point_clouds': batch_data_label['point_clouds']}
if FLAGS.use_imvotenet:
inputs.update({'scale': batch_data_label['scale'],
'calib_K': batch_data_label['calib_K'],
'calib_Rtilt': batch_data_label['calib_Rtilt'],
'cls_score_feats': batch_data_label['cls_score_feats'],
'full_img_votes_1d': batch_data_label['full_img_votes_1d'],
'full_img_1d': batch_data_label['full_img_1d'],
'full_img_width': batch_data_label['full_img_width'],
})
with torch.no_grad():
end_points = net(inputs)
# Compute loss
for key in batch_data_label:
if key not in end_points:
end_points[key] = batch_data_label[key]
loss, end_points = criterion(end_points, DATASET_CONFIG, KEY_PREFIX_LIST, TOWER_WEIGHTS)
# Accumulate statistics and print out
for key in end_points:
if 'loss' in key or 'acc' in key or 'ratio' in key:
if key not in stat_dict: stat_dict[key] = 0
stat_dict[key] += end_points[key].item()
for key_prefix in KEY_PREFIX_LIST:
batch_pred_map_cls = parse_predictions(end_points, CONFIG_DICT, key_prefix)
batch_gt_map_cls = parse_groundtruths(end_points, CONFIG_DICT)
ap_calculator_dict[key_prefix+'ap_calculator'].step(batch_pred_map_cls, batch_gt_map_cls)
# Dump evaluation results for visualization
if FLAGS.dump_results and batch_idx == 0 and EPOCH_CNT %10 == 0:
MODEL.dump_results(end_points, DUMP_DIR, DATASET_CONFIG, key_prefix=KEY_PREFIX_LIST[-1])
# Log statistics
TEST_VISUALIZER.log_scalars({key:stat_dict[key]/float(batch_idx+1) for key in stat_dict},
(EPOCH_CNT+1)*len(TRAIN_DATALOADER)*BATCH_SIZE)
for key in sorted(stat_dict.keys()):
log_string('eval mean %s: %f'%(key, stat_dict[key]/(float(batch_idx+1))))
# Evaluate average precision
for key_prefix in KEY_PREFIX_LIST:
metrics_dict = ap_calculator_dict[key_prefix+'ap_calculator'].compute_metrics()
for key in metrics_dict:
log_string('eval %s: %f'%(key, metrics_dict[key]))
mean_loss = stat_dict['loss']/float(batch_idx+1)
return mean_loss
def train(start_epoch):
global EPOCH_CNT
min_loss = 1e10
loss = 0
for epoch in range(start_epoch, MAX_EPOCH):
EPOCH_CNT = epoch
log_string('**** EPOCH %03d ****' % (epoch))
log_string('Current learning rate: %f'%(get_current_lr(epoch)))
log_string('Current BN decay momentum: %f'%(bnm_scheduler.lmbd(bnm_scheduler.last_epoch)))
log_string(str(datetime.now()))
# Reset numpy seed.
# REF: https://github.com/pytorch/pytorch/issues/5059
np.random.seed()
train_one_epoch()
if EPOCH_CNT == 0 or EPOCH_CNT % 10 == 9: # Eval every 10 epochs
loss = evaluate_one_epoch()
# Save checkpoint
save_dict = {'epoch': epoch+1, # after training one epoch, the start_epoch should be epoch+1
'optimizer_state_dict': optimizer.state_dict(),
'loss': loss,
}
try: # with nn.DataParallel() the net is added as a submodule of DataParallel
save_dict['model_state_dict'] = net.module.state_dict()
except:
save_dict['model_state_dict'] = net.state_dict()
torch.save(save_dict, os.path.join(LOG_DIR, 'checkpoint.tar'))
if __name__=='__main__':
train(start_epoch)