-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathutils.py
379 lines (317 loc) · 14.1 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
# Copyright (c) Facebook, Inc. and its affiliates.
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import sys
import math
from tqdm import tqdm
import random
import numpy as np
import scipy.sparse as ssp
from scipy.sparse.csgraph import shortest_path
import torch
from torch_sparse import spspmm
import torch_geometric
from torch_geometric.data import DataLoader
from torch_geometric.data import Data
from torch_geometric.utils import (negative_sampling, add_self_loops,
train_test_split_edges)
import pdb
def neighbors(fringe, A, outgoing=True):
# Find all 1-hop neighbors of nodes in fringe from graph A,
# where A is a scipy csr adjacency matrix.
# If outgoing=True, find neighbors with outgoing edges;
# otherwise, find neighbors with incoming edges (you should
# provide a csc matrix in this case).
if outgoing:
res = set(A[list(fringe)].indices)
else:
res = set(A[:, list(fringe)].indices)
return res
def k_hop_subgraph(src, dst, num_hops, A, sample_ratio=1.0,
max_nodes_per_hop=None, node_features=None,
y=1, directed=False, A_csc=None):
# Extract the k-hop enclosing subgraph around link (src, dst) from A.
nodes = [src, dst]
dists = [0, 0]
visited = set([src, dst])
fringe = set([src, dst])
for dist in range(1, num_hops+1):
if not directed:
fringe = neighbors(fringe, A)
else:
out_neighbors = neighbors(fringe, A)
in_neighbors = neighbors(fringe, A_csc, False)
fringe = out_neighbors.union(in_neighbors)
fringe = fringe - visited
visited = visited.union(fringe)
if sample_ratio < 1.0:
fringe = random.sample(fringe, int(sample_ratio*len(fringe)))
if max_nodes_per_hop is not None:
if max_nodes_per_hop < len(fringe):
fringe = random.sample(fringe, max_nodes_per_hop)
if len(fringe) == 0:
break
nodes = nodes + list(fringe)
dists = dists + [dist] * len(fringe)
subgraph = A[nodes, :][:, nodes]
# Remove target link between the subgraph.
subgraph[0, 1] = 0
subgraph[1, 0] = 0
if node_features is not None:
node_features = node_features[nodes]
return nodes, subgraph, dists, node_features, y
def drnl_node_labeling(adj, src, dst):
# Double Radius Node Labeling (DRNL).
src, dst = (dst, src) if src > dst else (src, dst)
idx = list(range(src)) + list(range(src + 1, adj.shape[0]))
adj_wo_src = adj[idx, :][:, idx]
idx = list(range(dst)) + list(range(dst + 1, adj.shape[0]))
adj_wo_dst = adj[idx, :][:, idx]
dist2src = shortest_path(adj_wo_dst, directed=False, unweighted=True, indices=src)
dist2src = np.insert(dist2src, dst, 0, axis=0)
dist2src = torch.from_numpy(dist2src)
dist2dst = shortest_path(adj_wo_src, directed=False, unweighted=True, indices=dst-1)
dist2dst = np.insert(dist2dst, src, 0, axis=0)
dist2dst = torch.from_numpy(dist2dst)
dist = dist2src + dist2dst
dist_over_2, dist_mod_2 = dist // 2, dist % 2
z = 1 + torch.min(dist2src, dist2dst)
z += dist_over_2 * (dist_over_2 + dist_mod_2 - 1)
z[src] = 1.
z[dst] = 1.
z[torch.isnan(z)] = 0.
return z.to(torch.long)
def de_node_labeling(adj, src, dst, max_dist=3):
# Distance Encoding. See "Li et. al., Distance Encoding: Design Provably More
# Powerful Neural Networks for Graph Representation Learning."
src, dst = (dst, src) if src > dst else (src, dst)
dist = shortest_path(adj, directed=False, unweighted=True, indices=[src, dst])
dist = torch.from_numpy(dist)
dist[dist > max_dist] = max_dist
dist[torch.isnan(dist)] = max_dist + 1
return dist.to(torch.long).t()
def de_plus_node_labeling(adj, src, dst, max_dist=100):
# Distance Encoding Plus. When computing distance to src, temporarily mask dst;
# when computing distance to dst, temporarily mask src. Essentially the same as DRNL.
src, dst = (dst, src) if src > dst else (src, dst)
idx = list(range(src)) + list(range(src + 1, adj.shape[0]))
adj_wo_src = adj[idx, :][:, idx]
idx = list(range(dst)) + list(range(dst + 1, adj.shape[0]))
adj_wo_dst = adj[idx, :][:, idx]
dist2src = shortest_path(adj_wo_dst, directed=False, unweighted=True, indices=src)
dist2src = np.insert(dist2src, dst, 0, axis=0)
dist2src = torch.from_numpy(dist2src)
dist2dst = shortest_path(adj_wo_src, directed=False, unweighted=True, indices=dst-1)
dist2dst = np.insert(dist2dst, src, 0, axis=0)
dist2dst = torch.from_numpy(dist2dst)
dist = torch.cat([dist2src.view(-1, 1), dist2dst.view(-1, 1)], 1)
dist[dist > max_dist] = max_dist
dist[torch.isnan(dist)] = max_dist + 1
return dist.to(torch.long)
def construct_pyg_graph(node_ids, adj, dists, node_features, y, node_label='drnl'):
# Construct a pytorch_geometric graph from a scipy csr adjacency matrix.
u, v, r = ssp.find(adj)
num_nodes = adj.shape[0]
node_ids = torch.LongTensor(node_ids)
u, v = torch.LongTensor(u), torch.LongTensor(v)
r = torch.LongTensor(r)
edge_index = torch.stack([u, v], 0)
edge_weight = r.to(torch.float)
y = torch.tensor([y])
if node_label == 'drnl': # DRNL
z = drnl_node_labeling(adj, 0, 1)
elif node_label == 'hop': # mininum distance to src and dst
z = torch.tensor(dists)
elif node_label == 'zo': # zero-one labeling trick
z = (torch.tensor(dists)==0).to(torch.long)
elif node_label == 'de': # distance encoding
z = de_node_labeling(adj, 0, 1)
elif node_label == 'de+':
z = de_plus_node_labeling(adj, 0, 1)
elif node_label == 'degree': # this is technically not a valid labeling trick
z = torch.tensor(adj.sum(axis=0)).squeeze(0)
z[z>100] = 100 # limit the maximum label to 100
else:
z = torch.zeros(len(dists), dtype=torch.long)
data = Data(node_features, edge_index, edge_weight=edge_weight, y=y, z=z,
node_id=node_ids, num_nodes=num_nodes)
return data
def extract_enclosing_subgraphs(link_index, A, x, y, num_hops, node_label='drnl',
ratio_per_hop=1.0, max_nodes_per_hop=None,
directed=False, A_csc=None):
# Extract enclosing subgraphs from A for all links in link_index.
data_list = []
for src, dst in tqdm(link_index.t().tolist()):
tmp = k_hop_subgraph(src, dst, num_hops, A, ratio_per_hop,
max_nodes_per_hop, node_features=x, y=y,
directed=directed, A_csc=A_csc)
data = construct_pyg_graph(*tmp, node_label)
data_list.append(data)
return data_list
def do_edge_split(dataset, fast_split=False, val_ratio=0.05, test_ratio=0.1):
data = dataset[0]
random.seed(234)
torch.manual_seed(234)
if not fast_split:
data = train_test_split_edges(data, val_ratio, test_ratio)
edge_index, _ = add_self_loops(data.train_pos_edge_index)
data.train_neg_edge_index = negative_sampling(
edge_index, num_nodes=data.num_nodes,
num_neg_samples=data.train_pos_edge_index.size(1))
else:
num_nodes = data.num_nodes
row, col = data.edge_index
# Return upper triangular portion.
mask = row < col
row, col = row[mask], col[mask]
n_v = int(math.floor(val_ratio * row.size(0)))
n_t = int(math.floor(test_ratio * row.size(0)))
# Positive edges.
perm = torch.randperm(row.size(0))
row, col = row[perm], col[perm]
r, c = row[:n_v], col[:n_v]
data.val_pos_edge_index = torch.stack([r, c], dim=0)
r, c = row[n_v:n_v + n_t], col[n_v:n_v + n_t]
data.test_pos_edge_index = torch.stack([r, c], dim=0)
r, c = row[n_v + n_t:], col[n_v + n_t:]
data.train_pos_edge_index = torch.stack([r, c], dim=0)
# Negative edges (cannot guarantee (i,j) and (j,i) won't both appear)
neg_edge_index = negative_sampling(
data.edge_index, num_nodes=num_nodes,
num_neg_samples=row.size(0))
data.val_neg_edge_index = neg_edge_index[:, :n_v]
data.test_neg_edge_index = neg_edge_index[:, n_v:n_v + n_t]
data.train_neg_edge_index = neg_edge_index[:, n_v + n_t:]
split_edge = {'train': {}, 'valid': {}, 'test': {}}
split_edge['train']['edge'] = data.train_pos_edge_index.t()
split_edge['train']['edge_neg'] = data.train_neg_edge_index.t()
split_edge['valid']['edge'] = data.val_pos_edge_index.t()
split_edge['valid']['edge_neg'] = data.val_neg_edge_index.t()
split_edge['test']['edge'] = data.test_pos_edge_index.t()
split_edge['test']['edge_neg'] = data.test_neg_edge_index.t()
return split_edge
def get_pos_neg_edges(split, split_edge, edge_index, num_nodes, percent=100):
if 'edge' in split_edge['train']:
pos_edge = split_edge[split]['edge'].t()
if 'edge_neg' in split_edge[split]:
# use presampled negative training edges for ogbl-vessel
neg_edge = split_edge[split]['edge_neg'].t()
else:
new_edge_index, _ = add_self_loops(edge_index)
neg_edge = negative_sampling(
new_edge_index, num_nodes=num_nodes,
num_neg_samples=pos_edge.size(1))
# subsample for pos_edge
np.random.seed(123)
num_pos = pos_edge.size(1)
perm = np.random.permutation(num_pos)
perm = perm[:int(percent / 100 * num_pos)]
pos_edge = pos_edge[:, perm]
# subsample for neg_edge
np.random.seed(123)
num_neg = neg_edge.size(1)
perm = np.random.permutation(num_neg)
perm = perm[:int(percent / 100 * num_neg)]
neg_edge = neg_edge[:, perm]
elif 'source_node' in split_edge['train']:
source = split_edge[split]['source_node']
target = split_edge[split]['target_node']
if split == 'train':
target_neg = torch.randint(0, num_nodes, [target.size(0), 1],
dtype=torch.long)
else:
target_neg = split_edge[split]['target_node_neg']
# subsample
np.random.seed(123)
num_source = source.size(0)
perm = np.random.permutation(num_source)
perm = perm[:int(percent / 100 * num_source)]
source, target, target_neg = source[perm], target[perm], target_neg[perm, :]
pos_edge = torch.stack([source, target])
neg_per_target = target_neg.size(1)
neg_edge = torch.stack([source.repeat_interleave(neg_per_target),
target_neg.view(-1)])
return pos_edge, neg_edge
def CN(A, edge_index, batch_size=100000):
# The Common Neighbor heuristic score.
link_loader = DataLoader(range(edge_index.size(1)), batch_size)
scores = []
for ind in tqdm(link_loader):
src, dst = edge_index[0, ind], edge_index[1, ind]
cur_scores = np.array(np.sum(A[src].multiply(A[dst]), 1)).flatten()
scores.append(cur_scores)
return torch.FloatTensor(np.concatenate(scores, 0)), edge_index
def AA(A, edge_index, batch_size=100000):
# The Adamic-Adar heuristic score.
multiplier = 1 / np.log(A.sum(axis=0))
multiplier[np.isinf(multiplier)] = 0
A_ = A.multiply(multiplier).tocsr()
link_loader = DataLoader(range(edge_index.size(1)), batch_size)
scores = []
for ind in tqdm(link_loader):
src, dst = edge_index[0, ind], edge_index[1, ind]
cur_scores = np.array(np.sum(A[src].multiply(A_[dst]), 1)).flatten()
scores.append(cur_scores)
scores = np.concatenate(scores, 0)
return torch.FloatTensor(scores), edge_index
def PPR(A, edge_index):
# The Personalized PageRank heuristic score.
# Need install fast_pagerank by "pip install fast-pagerank"
# Too slow for large datasets now.
from fast_pagerank import pagerank_power
num_nodes = A.shape[0]
src_index, sort_indices = torch.sort(edge_index[0])
dst_index = edge_index[1, sort_indices]
edge_index = torch.stack([src_index, dst_index])
#edge_index = edge_index[:, :50]
scores = []
visited = set([])
j = 0
for i in tqdm(range(edge_index.shape[1])):
if i < j:
continue
src = edge_index[0, i]
personalize = np.zeros(num_nodes)
personalize[src] = 1
ppr = pagerank_power(A, p=0.85, personalize=personalize, tol=1e-7)
j = i
while edge_index[0, j] == src:
j += 1
if j == edge_index.shape[1]:
break
all_dst = edge_index[1, i:j]
cur_scores = ppr[all_dst]
if cur_scores.ndim == 0:
cur_scores = np.expand_dims(cur_scores, 0)
scores.append(np.array(cur_scores))
scores = np.concatenate(scores, 0)
return torch.FloatTensor(scores), edge_index
class Logger(object):
def __init__(self, runs, info=None):
self.info = info
self.results = [[] for _ in range(runs)]
def add_result(self, run, result):
assert len(result) == 2
assert run >= 0 and run < len(self.results)
self.results[run].append(result)
def print_statistics(self, run=None, f=sys.stdout):
if run is not None:
result = 100 * torch.tensor(self.results[run])
argmax = result[:, 0].argmax().item()
print(f'Run {run + 1:02d}:', file=f)
print(f'Highest Valid: {result[:, 0].max():.2f}', file=f)
print(f'Highest Eval Point: {argmax + 1}', file=f)
print(f' Final Test: {result[argmax, 1]:.2f}', file=f)
else:
result = 100 * torch.tensor(self.results)
best_results = []
for r in result:
valid = r[:, 0].max().item()
test = r[r[:, 0].argmax(), 1].item()
best_results.append((valid, test))
best_result = torch.tensor(best_results)
print(f'All runs:', file=f)
r = best_result[:, 0]
print(f'Highest Valid: {r.mean():.2f} ± {r.std():.2f}', file=f)
r = best_result[:, 1]
print(f' Final Test: {r.mean():.2f} ± {r.std():.2f}', file=f)