The simplest way to build Aria Data Tools is either to use:
- Pre-compiled python package from PyPI (The Python Package Index)
- From source for
Requirements:
- C++17 compiler
- Python3 (>=3.8 recommended)
In a nutshell
pip install projectaria-tools==0.0.3
python
>>> import projectaria_tools
>>> dir(projectaria_tools)
['__doc__', '__loader__', '__name__', '__package__', '__spec__', 'dataprovider', 'mps_io', 'sensors']
>>> quit()
Using isolated/virtual environment
# Here’s an e2e example that:
# - creates a virtual environment in python3.9
# - installs `projectaria_tools` pkg and imports it
python3.9 -m venv projectaria_env
source ./projectaria_env/bin/activate
pip install projectaria_tools
python
>>> import projectaria_tools
>>> dir(projectaria_tools)
['__doc__', '__loader__', '__name__', '__package__', '__spec__', 'dataprovider', 'mps_io', 'sensors']
>>> quit()
deactivate
rm -rf ./projectaria_env
We are detailing here instruction to install Aria Data Tools on Debian/Fedora/MacOS systems. The build process is separated in 2 steps:
- Installing 3rd party requirements 2.a Cloning, compiling Aria Data Tools [C++] 2.b Cloning, compiling Aria Data Tools [Python]
Pick your platform and follow along the provided instructions:
Debian/Ubuntu
# Install build essentials && python pip essentials
sudo apt-get install -y cmake git build-essential
sudo apt-get install -y libpython3-dev python3-pip
# Install VRS dependencies
sudo apt-get install -y libgtest-dev libgmock-dev \
libfmt-dev \
libturbojpeg-dev libpng-dev \
liblz4-dev libzstd-dev libxxhash-dev \
libboost-system-dev libboost-filesystem-dev libboost-thread-dev libboost-chrono-dev libboost-date-time-dev
# Installing cereal library (header only) to get the last version
cd /tmp
git clone https://github.com/USCiLab/cereal.git -b v1.3.2
cd cereal
cmake -DSKIP_PORTABILITY_TEST=1 -DJUST_INSTALL_CEREAL=ON .
sudo make -j2 install
rm -rf /tmp/cereal
Fedora
# Install build essentials
sudo dnf install -y git cmake gcc gcc-c++ make
# Install python (or use your system config)
sudo dnf install -y python3-devel; pip3 install --upgrade pip; pip3 install pybind11[global] numpy
# Install VRS dependencies
sudo dnf install -y gtest-devel gmock-devel glog-devel \
fmt-devel lz4-devel libzstd-devel xxhash-devel \
boost-devel libpng-devel libjpeg-turbo-devel turbojpeg-devel;
# Installing cereal library (header only) to get the last version
cd /tmp
git clone https://github.com/USCiLab/cereal.git -b v1.3.2
cd cereal
cmake -DSKIP_PORTABILITY_TEST=1 -DJUST_INSTALL_CEREAL=ON .
sudo make -j2 install
rm -rf /tmp/cereal
MacOS
# Install build essentials with Homebrew
brew install git cmake
# Install python (or use your system config)
brew install python3
# Install VRS dependencies
brew install boost fmt sophus cereal googletest glog lz4 zstd xxhash libpng jpeg-turbo
Debian/Ubuntu/Fedora/MacOS
# Clone the project
git clone https://github.com/facebookresearch/Aria_data_tools.git --recursive
mkdir build
cmake -DCMAKE_BUILD_TYPE=RELEASE -S ./Aria_data_tools/src -B build
cd build
make -j
Debian/Ubuntu/Fedora/MacOS
# Go to source folder & build/install python bindings
cd Aria_data_tools/src
pip3 install --global-option=build_ext --global-option="-j2" .;
# Testing successful install
python
>>> import projectaria.tools
>>> dir(projectaria.tools.datatools)
['__doc__', '__loader__', '__name__', '__package__', '__spec__', 'dataprovider', 'mpsIO', 'sensors']
Visualization samples using Pangolin are optional and can be de/activated easily at the cmake configure step -DBUILD_WITH_PANGOLIN=ON
. Here are the instructions to setup Pangolin and its internal dependencies.
Ubuntu/Debian
sudo apt-get install -y libeigen3-dev libglew-dev libgl1-mesa-dev
Fedora
sudo dnf install -y glew-devel eigen3
MacOS
brew install eigen glew
Debian/Ubuntu/Fedora/MacOS
cd /tmp
git clone https://github.com/stevenlovegrove/Pangolin.git -b v0.8
# Package installed above should be enough,
# FYI you can also install all Pangolin REQUIRED dependencies by using
# "./Pangolin/scripts/install_prerequisites.sh required"
mkdir Pangolin_Build && cd Pangolin_Build
cmake -DCMAKE_BUILD_TYPE=Release -DBUILD_TOOLS=OFF -DBUILD_PANGOLIN_PYTHON=OFF -DBUILD_EXAMPLES=OFF ../Pangolin/
sudo make -j install
Debian/Ubuntu/Fedora/MacOS
# Cloning the project
git clone https://github.com/facebookresearch/Aria_data_tools.git --recursive
# Building the project
mkdir build
cmake -DCMAKE_BUILD_TYPE=RELEASE -DBUILD_WITH_PANGOLIN=ON -S ./Aria_data_tools/src -B build
cd build
make -j
# Testing a visualization sample
./visualization/aria_viewer ../Aria_data_tools/data/aria_unit_test_sequence_calib.vrs
Here are the instruction to compile and run Aria Data Tools in isolation in a container. Podman or Docker can be used.
Debian/Ubuntu/Fedora/MacOS
git clone https://github.com/facebookresearch/Aria_data_tools.git --recursive
cd Aria_data_tools/src
podman build . -t aria_data_tools
podman run -it aria_data_tools
- If you setup allow X11 forwarding you can see GUI elements from your container on your host machine (tested on Linux):
podman run -it -e DISPLAY -v /tmp/.X11-unix:/tmp/.X11-unix localhost/aria_data_tools:latest
- Adding volume(s) in your container allow you to quickly iterate on code or local data:
podman run -it --volume <SOME_PATH>/aria_data_tools/:/tmp/src_aria --volume '<SOME_PATH>Documents/TestingData':/tmp/data_test aria_data_tools