-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathcommandline.py
executable file
·453 lines (388 loc) · 20 KB
/
commandline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import collections
import inspect
import logging
import os
import sys
import colorama
import torch
import attacks
import augmentations
import datasets
import holistic_records
import logger
import losses
import models
from utils import json
from utils import strings
from utils import type_inference as typeinf
def _add_arguments_for_module(parser,
module,
name,
default_class,
add_class_argument=True, # whether to add class choice as argument
include_classes="*",
exclude_classes=(),
exclude_params=("self", "args"),
param_defaults=(), # allows to overwrite any default param
forced_default_types=(), # allows to set types for known arguments
unknown_default_types=()): # allows to set types for unknown arguments
# -------------------------------------------------------------------------
# Gets around the issue of mutable default arguments
# -------------------------------------------------------------------------
exclude_params = list(exclude_params)
param_defaults = dict(param_defaults)
forced_default_types = dict(forced_default_types)
unknown_default_types = dict(unknown_default_types)
# -------------------------------------------------------------------------
# Determine possible choices from class names in module, possibly apply include/exclude filters
# -------------------------------------------------------------------------
module_dict = typeinf.module_classes_to_dict(
module, include_classes=include_classes, exclude_classes=exclude_classes)
# -------------------------------------------------------------------------
# Parse known arguments to determine choice for argument name
# -------------------------------------------------------------------------
if add_class_argument:
parser.add_argument(
"--%s" % name, type=str, default=default_class, choices=module_dict.keys())
known_args = parser.parse_known_args(sys.argv[1:])[0]
else:
# build a temporary parser, and do not add the class as argument
tmp_parser = argparse.ArgumentParser()
tmp_parser.add_argument(
"--%s" % name, type=str, default=default_class, choices=module_dict.keys())
known_args = tmp_parser.parse_known_args(sys.argv[1:])[0]
class_name = vars(known_args)[name]
# -------------------------------------------------------------------------
# If class is None, there is no point in trying to parse further arguments
# -------------------------------------------------------------------------
if class_name is None:
return
# -------------------------------------------------------------------------
# Get constructor of that argument choice
# -------------------------------------------------------------------------
class_constructor = module_dict[class_name]
# -------------------------------------------------------------------------
# Determine constructor argument names and defaults
# -------------------------------------------------------------------------
try:
argspec = inspect.getargspec(class_constructor.__init__)
argspec_defaults = argspec.defaults if argspec.defaults is not None else []
full_args = argspec.args
default_args_dict = dict(zip(argspec.args[-len(argspec_defaults):], argspec_defaults))
except TypeError:
print(argspec)
print(argspec.defaults)
raise ValueError("unknown_default_types should be adjusted for module: '%s.py'" % name)
def _get_type_from_arg(arg):
if isinstance(arg, bool):
return strings.as_bool_or_none
else:
return type(arg)
# -------------------------------------------------------------------------
# Add sub_arguments
# -------------------------------------------------------------------------
for argname in full_args:
# ---------------------------------------------------------------------
# Skip
# ---------------------------------------------------------------------
if argname in exclude_params:
continue
# ---------------------------------------------------------------------
# Sub argument name
# ---------------------------------------------------------------------
sub_arg_name = "%s_%s" % (name, argname)
# ---------------------------------------------------------------------
# If a default argument is given, take that one
# ---------------------------------------------------------------------
if argname in param_defaults.keys():
parser.add_argument(
"--%s" % sub_arg_name,
type=_get_type_from_arg(param_defaults[argname]),
default=param_defaults[argname])
# ---------------------------------------------------------------------
# If a default parameter can be inferred from the module, pick that one
# ---------------------------------------------------------------------
elif argname in default_args_dict.keys():
# -----------------------------------------------------------------
# Check for forced default types
# -----------------------------------------------------------------
if argname in forced_default_types.keys():
argtype = forced_default_types[argname]
else:
argtype = _get_type_from_arg(default_args_dict[argname])
parser.add_argument(
"--%s" % sub_arg_name, type=argtype, default=default_args_dict[argname])
# ---------------------------------------------------------------------
# Take from the unkowns list
# ---------------------------------------------------------------------
elif argname in unknown_default_types.keys():
parser.add_argument("--%s" % sub_arg_name, type=unknown_default_types[argname])
else:
raise ValueError(
"Do not know how to handle argument '%s' for class '%s'" % (argname, name))
def _add_special_arguments(parser):
# -------------------------------------------------------------------------
# Known arguments so far
# -------------------------------------------------------------------------
known_args = vars(parser.parse_known_args(sys.argv[1:])[0])
# -------------------------------------------------------------------------
# Add special arguments for training
# -------------------------------------------------------------------------
loss = known_args["loss"]
if loss is not None:
parser.add_argument("--training_key", type=str, default="total_loss")
# -------------------------------------------------------------------------
# Add special arguments for validation
# -------------------------------------------------------------------------
parser.add_argument(
"--validation_keys", type=strings.as_stringlist_or_none, default="[total_loss]")
parser.add_argument(
"--validation_keys_minimize", type=strings.as_booleanlist_or_none, default="[True]")
# -------------------------------------------------------------------------
# Add special arguments for checkpoints
# -------------------------------------------------------------------------
checkpoint = known_args["checkpoint"]
if checkpoint is not None:
parser.add_argument(
"--checkpoint_mode", type=str, default="resume_from_latest",
choices=["resume_from_latest", "resume_from_best"])
parser.add_argument(
"--checkpoint_include_params", type=strings.as_stringlist_or_none, default="[*]")
parser.add_argument(
"--checkpoint_exclude_params", type=strings.as_stringlist_or_none, default="[]")
# -------------------------------------------------------------------------
# Add special arguments for optimizer groups
# -------------------------------------------------------------------------
parser.add_argument(
"--optimizer_group", action="append", type=strings.as_dict_or_none, default=None)
def _parse_arguments():
# -------------------------------------------------------------------------
# Argument parser and shortcut function to add arguments
# -------------------------------------------------------------------------
parser = argparse.ArgumentParser()
add = parser.add_argument
# -------------------------------------------------------------------------
# Standard arguments
# -------------------------------------------------------------------------
add("--batch_size", type=int, default=1)
add("--checkpoint", type=strings.as_string_or_none, default=None)
add("--cuda", type=strings.as_bool_or_none, default=True)
add("--evaluation", type=strings.as_bool_or_none, default=False)
add("--logging_loss_graph", type=strings.as_bool_or_none, default=False)
add("--logging_model_graph", type=strings.as_bool_or_none, default=False)
add("--name", default="run", type=str)
add("--num_workers", type=int, default=4)
add("--proctitle", default="./workwork", type=str)
add("--save", "-s", default="/tmp/work", type=str)
add("--seed", type=int, default=1)
add("--start_epoch", type=int, default=1)
add("--total_epochs", type=int, default=10)
# -------------------------------------------------------------------------
# Arguments inferred from losses
# -------------------------------------------------------------------------
_add_arguments_for_module(
parser,
losses,
name="loss",
default_class=None,
exclude_classes=["_*", "Variable"],
exclude_params=["self", "args"])
# -------------------------------------------------------------------------
# Arguments inferred from models
# -------------------------------------------------------------------------
_add_arguments_for_module(
parser,
models,
name="model",
default_class="FlowNet1S",
exclude_classes=["_*", "Variable"],
exclude_params=["self", "args"])
# -------------------------------------------------------------------------
# Arguments inferred from attacks
# -------------------------------------------------------------------------
_add_arguments_for_module(
parser,
attacks,
name="attack",
default_class=None,
exclude_classes=["_*", "Variable"],
exclude_params=["self", "args"])
# -------------------------------------------------------------------------
# Arguments inferred from augmentations for training
# -------------------------------------------------------------------------
_add_arguments_for_module(
parser,
augmentations,
name="training_augmentation",
default_class=None,
exclude_classes=["_*"],
exclude_params=["self", "args"],
forced_default_types={"crop": strings.as_intlist_or_none})
# -------------------------------------------------------------------------
# Arguments inferred from augmentations for validation
# -------------------------------------------------------------------------
_add_arguments_for_module(
parser,
augmentations,
name="validation_augmentation",
default_class=None,
exclude_classes=["_*"],
exclude_params=["self", "args"])
# -------------------------------------------------------------------------
# Arguments inferred from datasets for training
# -------------------------------------------------------------------------
_add_arguments_for_module(
parser,
datasets,
name="training_dataset",
default_class=None,
exclude_params=["self", "args", "is_cropped"],
exclude_classes=["_*"],
unknown_default_types={"root": str},
forced_default_types={"photometric_augmentations": strings.as_dict_or_none,
"affine_augmentations": strings.as_dict_or_none})
# -------------------------------------------------------------------------
# Arguments inferred from datasets for validation
# -------------------------------------------------------------------------
_add_arguments_for_module(
parser,
datasets,
name="validation_dataset",
default_class=None,
exclude_params=["self", "args", "is_cropped"],
exclude_classes=["_*"],
unknown_default_types={"root": str},
forced_default_types={"photometric_augmentations": strings.as_dict_or_none,
"affine_augmentations": strings.as_dict_or_none})
# -------------------------------------------------------------------------
# Arguments inferred from PyTorch optimizers
# -------------------------------------------------------------------------
_add_arguments_for_module(
parser,
torch.optim,
name="optimizer",
default_class="Adam",
exclude_classes=["_*", "Optimizer", "constructor"],
exclude_params=["self", "args", "params"],
forced_default_types={"lr": float,
"momentum": float,
"betas": strings.as_floatlist_or_none,
"dampening": float,
"weight_decay": float,
"nesterov": strings.as_bool_or_none})
# -------------------------------------------------------------------------
# Arguments inferred from PyTorch lr schedulers
# -------------------------------------------------------------------------
_add_arguments_for_module(
parser,
torch.optim.lr_scheduler,
name="lr_scheduler",
default_class=None,
exclude_classes=["_*", "constructor"],
exclude_params=["self", "args", "optimizer"],
unknown_default_types={"T_max": int,
"lr_lambda": str,
"step_size": int,
"milestones": strings.as_intlist_or_none,
"gamma": float})
# -------------------------------------------------------------------------
# Arguments inferred from holistic records
# -------------------------------------------------------------------------
_add_arguments_for_module(
parser,
holistic_records,
default_class="EpochRecorder",
name="holistic_records",
add_class_argument=False,
exclude_classes=["_*"],
exclude_params=["self", "args", "root", "epoch", "dataset"])
# -------------------------------------------------------------------------
# Special arguments
# -------------------------------------------------------------------------
_add_special_arguments(parser)
# -------------------------------------------------------------------------
# Parse arguments
# -------------------------------------------------------------------------
args = parser.parse_args()
# -------------------------------------------------------------------------
# Parse default arguments from a dummy commandline not specifying any args
# -------------------------------------------------------------------------
defaults = vars(parser.parse_known_args(['--dummy'])[0])
# -------------------------------------------------------------------------
# Consistency checks
# -------------------------------------------------------------------------
args.cuda = args.cuda and torch.cuda.is_available()
return args, defaults
def postprocess_args(args):
# ----------------------------------------------------------------------------
# Get appropriate class constructors from modules
# ----------------------------------------------------------------------------
args.model_class = typeinf.module_classes_to_dict(models)[args.model]
if args.optimizer is not None:
optimizer_classes = typeinf.module_classes_to_dict(torch.optim)
args.optimizer_class = optimizer_classes[args.optimizer]
if args.loss is not None:
loss_classes = typeinf.module_classes_to_dict(losses)
args.loss_class = loss_classes[args.loss]
if args.lr_scheduler is not None:
scheduler_classes = typeinf.module_classes_to_dict(torch.optim.lr_scheduler)
args.lr_scheduler_class = scheduler_classes[args.lr_scheduler]
if args.training_dataset is not None:
dataset_classes = typeinf.module_classes_to_dict(datasets)
args.training_dataset_class = dataset_classes[args.training_dataset]
if args.validation_dataset is not None:
dataset_classes = typeinf.module_classes_to_dict(datasets)
args.validation_dataset_class = dataset_classes[args.validation_dataset]
if args.training_augmentation is not None:
augmentation_classes = typeinf.module_classes_to_dict(augmentations)
args.training_augmentation_class = augmentation_classes[args.training_augmentation]
if args.validation_augmentation is not None:
augmentation_classes = typeinf.module_classes_to_dict(augmentations)
args.validation_augmentation_class = augmentation_classes[args.validation_augmentation]
if args.attack is not None:
attack_classes = typeinf.module_classes_to_dict(attacks)
args.attack_class = attack_classes[args.attack]
# ----------------------------------------------------------------------------
# holistic records
# ----------------------------------------------------------------------------
holistic_records_args = typeinf.kwargs_from_args(args, "holistic_records")
for key, value in holistic_records_args.items():
setattr(args, "holistic_records_kwargs", holistic_records_args)
return args
def setup_logging_and_parse_arguments(blocktitle):
# ----------------------------------------------------------------------------
# Get parse commandline and default arguments
# ----------------------------------------------------------------------------
args, defaults = _parse_arguments()
# ----------------------------------------------------------------------------
# Setup logbook before everything else
# ----------------------------------------------------------------------------
logger.configure_logging(os.path.join(args.save, "logbook.txt"))
# ----------------------------------------------------------------------------
# Write arguments to file, as json and txt
# ----------------------------------------------------------------------------
json.write_dictionary_to_file(
vars(args), filename=os.path.join(args.save, "args.json"), sortkeys=True)
json.write_dictionary_to_file(
vars(args), filename=os.path.join(args.save, "args.txt"), sortkeys=True)
# ----------------------------------------------------------------------------
# Log arguments
# ----------------------------------------------------------------------------
with logger.LoggingBlock(blocktitle, emph=True):
for argument, value in sorted(vars(args).items()):
reset = colorama.Style.RESET_ALL
color = reset if value == defaults[argument] else colorama.Fore.CYAN
if isinstance(value, dict):
for sub_argument, sub_value in collections.OrderedDict(value).items():
logging.info("{}{}_{}: {}{}".format(color, argument, sub_argument, sub_value, reset))
else:
logging.info("{}{}: {}{}".format(color, argument, value, reset))
# ----------------------------------------------------------------------------
# Postprocess
# ----------------------------------------------------------------------------
args = postprocess_args(args)
return args