-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_pascal.py
executable file
·246 lines (205 loc) · 10.4 KB
/
train_pascal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import socket
import timeit
from datetime import datetime
import scipy.misc as sm
from collections import OrderedDict
import glob
# PyTorch includes
import torch.optim as optim
from torchvision import transforms
from torch.utils.data import DataLoader
from torch.nn.functional import upsample
# Tensorboard include
from tensorboardX import SummaryWriter
# Custom includes
from dataloaders.combine_dbs import CombineDBs as combine_dbs
import dataloaders.pascal as pascal
import dataloaders.sbd as sbd
from dataloaders import custom_transforms as tr
import networks.deeplab_resnet as resnet
from layers.loss import class_balanced_cross_entropy_loss
from dataloaders.helpers import *
# Set gpu_id to -1 to run in CPU mode, otherwise set the id of the corresponding gpu
gpu_id = 0
device = torch.device("cuda:"+str(gpu_id) if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
print('Using GPU: {} '.format(gpu_id))
# Setting parameters
use_sbd = False
nEpochs = 100 # Number of epochs for training
resume_epoch = 0 # Default is 0, change if want to resume
p = OrderedDict() # Parameters to include in report
classifier = 'psp' # Head classifier to use
p['trainBatch'] = 5 # Training batch size
testBatch = 5 # Testing batch size
useTest = 1 # See evolution of the test set when training?
nTestInterval = 10 # Run on test set every nTestInterval epochs
snapshot = 20 # Store a model every snapshot epochs
relax_crop = 50 # Enlarge the bounding box by relax_crop pixels
nInputChannels = 4 # Number of input channels (RGB + heatmap of extreme points)
zero_pad_crop = True # Insert zero padding when cropping the image
p['nAveGrad'] = 1 # Average the gradient of several iterations
p['lr'] = 1e-8 # Learning rate
p['wd'] = 0.0005 # Weight decay
p['momentum'] = 0.9 # Momentum
# Results and model directories (a new directory is generated for every run)
save_dir_root = os.path.join(os.path.dirname(os.path.abspath(__file__)))
exp_name = os.path.dirname(os.path.abspath(__file__)).split('/')[-1]
if resume_epoch == 0:
runs = sorted(glob.glob(os.path.join(save_dir_root, 'run_*')))
run_id = int(runs[-1].split('_')[-1]) + 1 if runs else 0
else:
run_id = 0
save_dir = os.path.join(save_dir_root, 'run_' + str(run_id))
if not os.path.exists(os.path.join(save_dir, 'models')):
os.makedirs(os.path.join(save_dir, 'models'))
# Network definition
modelName = 'dextr_pascal'
net = resnet.resnet101(1, pretrained=True, nInputChannels=nInputChannels, classifier=classifier)
if resume_epoch == 0:
print("Initializing from pretrained Deeplab-v2 model")
else:
print("Initializing weights from: {}".format(
os.path.join(save_dir, 'models', modelName + '_epoch-' + str(resume_epoch - 1) + '.pth')))
net.load_state_dict(
torch.load(os.path.join(save_dir, 'models', modelName + '_epoch-' + str(resume_epoch - 1) + '.pth'),
map_location=lambda storage, loc: storage))
train_params = [{'params': resnet.get_1x_lr_params(net), 'lr': p['lr']},
{'params': resnet.get_10x_lr_params(net), 'lr': p['lr'] * 10}]
net.to(device)
# Training the network
if resume_epoch != nEpochs:
# Logging into Tensorboard
log_dir = os.path.join(save_dir, 'models', datetime.now().strftime('%b%d_%H-%M-%S') + '_' + socket.gethostname())
writer = SummaryWriter(log_dir=log_dir)
# Use the following optimizer
optimizer = optim.SGD(train_params, lr=p['lr'], momentum=p['momentum'], weight_decay=p['wd'])
p['optimizer'] = str(optimizer)
# Preparation of the data loaders
composed_transforms_tr = transforms.Compose([
tr.RandomHorizontalFlip(),
tr.ScaleNRotate(rots=(-20, 20), scales=(.75, 1.25)),
tr.CropFromMask(crop_elems=('image', 'gt'), relax=relax_crop, zero_pad=zero_pad_crop),
tr.FixedResize(resolutions={'crop_image': (512, 512), 'crop_gt': (512, 512)}),
tr.ExtremePoints(sigma=10, pert=5, elem='crop_gt'),
tr.ToImage(norm_elem='extreme_points'),
tr.ConcatInputs(elems=('crop_image', 'extreme_points')),
tr.ToTensor()])
composed_transforms_ts = transforms.Compose([
tr.CropFromMask(crop_elems=('image', 'gt'), relax=relax_crop, zero_pad=zero_pad_crop),
tr.FixedResize(resolutions={'crop_image': (512, 512), 'crop_gt': (512, 512)}),
tr.ExtremePoints(sigma=10, pert=0, elem='crop_gt'),
tr.ToImage(norm_elem='extreme_points'),
tr.ConcatInputs(elems=('crop_image', 'extreme_points')),
tr.ToTensor()])
voc_train = pascal.VOCSegmentation(split='train', transform=composed_transforms_tr)
voc_val = pascal.VOCSegmentation(split='val', transform=composed_transforms_ts)
if use_sbd:
sbd = sbd.SBDSegmentation(split=['train', 'val'], transform=composed_transforms_tr, retname=True)
db_train = combine_dbs([voc_train, sbd], excluded=[voc_val])
else:
db_train = voc_train
p['dataset_train'] = str(db_train)
p['transformations_train'] = [str(tran) for tran in composed_transforms_tr.transforms]
p['dataset_test'] = str(db_train)
p['transformations_test'] = [str(tran) for tran in composed_transforms_ts.transforms]
trainloader = DataLoader(db_train, batch_size=p['trainBatch'], shuffle=True, num_workers=2)
testloader = DataLoader(voc_val, batch_size=testBatch, shuffle=False, num_workers=2)
generate_param_report(os.path.join(save_dir, exp_name + '.txt'), p)
# Train variables
num_img_tr = len(trainloader)
num_img_ts = len(testloader)
running_loss_tr = 0.0
running_loss_ts = 0.0
aveGrad = 0
print("Training Network")
# Main Training and Testing Loop
for epoch in range(resume_epoch, nEpochs):
start_time = timeit.default_timer()
net.train()
for ii, sample_batched in enumerate(trainloader):
inputs, gts = sample_batched['concat'], sample_batched['crop_gt']
# Forward-Backward of the mini-batch
inputs.requires_grad_()
inputs, gts = inputs.to(device), gts.to(device)
output = net.forward(inputs)
output = upsample(output, size=(512, 512), mode='bilinear', align_corners=True)
# Compute the losses, side outputs and fuse
loss = class_balanced_cross_entropy_loss(output, gts, size_average=False, batch_average=True)
running_loss_tr += loss.item()
# Print stuff
if ii % num_img_tr == num_img_tr - 1:
running_loss_tr = running_loss_tr / num_img_tr
writer.add_scalar('data/total_loss_epoch', running_loss_tr, epoch)
print('[Epoch: %d, numImages: %5d]' % (epoch, ii*p['trainBatch']+inputs.data.shape[0]))
print('Loss: %f' % running_loss_tr)
running_loss_tr = 0
stop_time = timeit.default_timer()
print("Execution time: " + str(stop_time - start_time)+"\n")
# Backward the averaged gradient
loss /= p['nAveGrad']
loss.backward()
aveGrad += 1
# Update the weights once in p['nAveGrad'] forward passes
if aveGrad % p['nAveGrad'] == 0:
writer.add_scalar('data/total_loss_iter', loss.item(), ii + num_img_tr * epoch)
optimizer.step()
optimizer.zero_grad()
aveGrad = 0
# Save the model
if (epoch % snapshot) == snapshot - 1 and epoch != 0:
torch.save(net.state_dict(), os.path.join(save_dir, 'models', modelName + '_epoch-' + str(epoch) + '.pth'))
# One testing epoch
if useTest and epoch % nTestInterval == (nTestInterval - 1):
net.eval()
with torch.no_grad():
for ii, sample_batched in enumerate(testloader):
inputs, gts = sample_batched['concat'], sample_batched['crop_gt']
# Forward pass of the mini-batch
inputs, gts = inputs.to(device), gts.to(device)
output = net.forward(inputs)
output = upsample(output, size=(512, 512), mode='bilinear', align_corners=True)
# Compute the losses, side outputs and fuse
loss = class_balanced_cross_entropy_loss(output, gts, size_average=False)
running_loss_ts += loss.item()
# Print stuff
if ii % num_img_ts == num_img_ts - 1:
running_loss_ts = running_loss_ts / num_img_ts
print('[Epoch: %d, numImages: %5d]' % (epoch, ii*testBatch+inputs.data.shape[0]))
writer.add_scalar('data/test_loss_epoch', running_loss_ts, epoch)
print('Loss: %f' % running_loss_ts)
running_loss_ts = 0
writer.close()
# Generate result of the validation images
net.eval()
composed_transforms_ts = transforms.Compose([
tr.CropFromMask(crop_elems=('image', 'gt'), relax=relax_crop, zero_pad=zero_pad_crop),
tr.FixedResize(resolutions={'gt': None, 'crop_image': (512, 512), 'crop_gt': (512, 512)}),
tr.ExtremePoints(sigma=10, pert=0, elem='crop_gt'),
tr.ToImage(norm_elem='extreme_points'),
tr.ConcatInputs(elems=('crop_image', 'extreme_points')),
tr.ToTensor()])
db_test = pascal.VOCSegmentation(split='val', transform=composed_transforms_ts, retname=True)
testloader = DataLoader(db_test, batch_size=1, shuffle=False, num_workers=1)
save_dir_res = os.path.join(save_dir, 'Results')
if not os.path.exists(save_dir_res):
os.makedirs(save_dir_res)
print('Testing Network')
with torch.no_grad():
# Main Testing Loop
for ii, sample_batched in enumerate(testloader):
inputs, gts, metas = sample_batched['concat'], sample_batched['gt'], sample_batched['meta']
# Forward of the mini-batch
inputs = inputs.to(device)
outputs = net.forward(inputs)
outputs = upsample(outputs, size=(512, 512), mode='bilinear', align_corners=True)
outputs = outputs.to(torch.device('cpu'))
for jj in range(int(inputs.size()[0])):
pred = np.transpose(outputs.data.numpy()[jj, :, :, :], (1, 2, 0))
pred = 1 / (1 + np.exp(-pred))
pred = np.squeeze(pred)
gt = tens2image(gts[jj, :, :, :])
bbox = get_bbox(gt, pad=relax_crop, zero_pad=zero_pad_crop)
result = crop2fullmask(pred, bbox, gt, zero_pad=zero_pad_crop, relax=relax_crop)
# Save the result, attention to the index jj
sm.imsave(os.path.join(save_dir_res, metas['image'][jj] + '-' + metas['object'][jj] + '.png'), result)