-
Notifications
You must be signed in to change notification settings - Fork 3.5k
/
Copy pathstate.go
697 lines (613 loc) · 23.9 KB
/
state.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
package driver
import (
"bytes"
"context"
"errors"
"fmt"
gosync "sync"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum-optimism/optimism/op-node/rollup"
"github.com/ethereum-optimism/optimism/op-node/rollup/async"
"github.com/ethereum-optimism/optimism/op-node/rollup/clsync"
"github.com/ethereum-optimism/optimism/op-node/rollup/conductor"
"github.com/ethereum-optimism/optimism/op-node/rollup/derive"
"github.com/ethereum-optimism/optimism/op-node/rollup/engine"
"github.com/ethereum-optimism/optimism/op-node/rollup/event"
"github.com/ethereum-optimism/optimism/op-node/rollup/finality"
"github.com/ethereum-optimism/optimism/op-node/rollup/status"
"github.com/ethereum-optimism/optimism/op-node/rollup/sync"
"github.com/ethereum-optimism/optimism/op-service/eth"
)
var (
ErrSequencerAlreadyStarted = errors.New("sequencer already running")
ErrSequencerAlreadyStopped = errors.New("sequencer not running")
)
// Deprecated: use eth.SyncStatus instead.
type SyncStatus = eth.SyncStatus
// sealingDuration defines the expected time it takes to seal the block
const sealingDuration = time.Millisecond * 50
type Driver struct {
eventSys event.System
statusTracker SyncStatusTracker
*SyncDeriver
sched *StepSchedulingDeriver
emitter event.Emitter
drain func() error
// Requests to block the event loop for synchronous execution to avoid reading an inconsistent state
stateReq chan chan struct{}
// Upon receiving a channel in this channel, the derivation pipeline is forced to be reset.
// It tells the caller that the reset occurred by closing the passed in channel.
forceReset chan chan struct{}
// Upon receiving a hash in this channel, the sequencer is started at the given hash.
// It tells the caller that the sequencer started by closing the passed in channel (or returning an error).
startSequencer chan hashAndErrorChannel
// Upon receiving a channel in this channel, the sequencer is stopped.
// It tells the caller that the sequencer stopped by returning the latest sequenced L2 block hash.
stopSequencer chan chan hashAndError
// Upon receiving a channel in this channel, the current sequencer status is queried.
// It tells the caller the status by outputting a boolean to the provided channel:
// true when the sequencer is active, false when it is not.
sequencerActive chan chan bool
// sequencerNotifs is notified when the sequencer is started or stopped
sequencerNotifs SequencerStateListener
sequencerConductor conductor.SequencerConductor
// Driver config: verifier and sequencer settings
driverConfig *Config
// L1 Signals:
//
// Not all L1 blocks, or all changes, have to be signalled:
// the derivation process traverses the chain and handles reorgs as necessary,
// the driver just needs to be aware of the *latest* signals enough so to not
// lag behind actionable data.
l1HeadSig chan eth.L1BlockRef
l1SafeSig chan eth.L1BlockRef
l1FinalizedSig chan eth.L1BlockRef
// Interface to signal the L2 block range to sync.
altSync AltSync
// async gossiper for payloads to be gossiped without
// blocking the event loop or waiting for insertion
asyncGossiper async.AsyncGossiper
// L2 Signals:
unsafeL2Payloads chan *eth.ExecutionPayloadEnvelope
sequencer SequencerIface
network Network // may be nil, network for is optional
metrics Metrics
log log.Logger
wg gosync.WaitGroup
driverCtx context.Context
driverCancel context.CancelFunc
}
// Start starts up the state loop.
// The loop will have been started iff err is not nil.
func (s *Driver) Start() error {
log.Info("Starting driver", "sequencerEnabled", s.driverConfig.SequencerEnabled, "sequencerStopped", s.driverConfig.SequencerStopped)
if s.driverConfig.SequencerEnabled {
// Notify the initial sequencer state
// This ensures persistence can write the state correctly and that the state file exists
var err error
if s.driverConfig.SequencerStopped {
err = s.sequencerNotifs.SequencerStopped()
} else {
err = s.sequencerNotifs.SequencerStarted()
}
if err != nil {
return fmt.Errorf("persist initial sequencer state: %w", err)
}
}
s.asyncGossiper.Start()
s.wg.Add(1)
go s.eventLoop()
return nil
}
func (s *Driver) Close() error {
s.driverCancel()
s.wg.Wait()
s.eventSys.Stop()
s.asyncGossiper.Stop()
s.sequencerConductor.Close()
return nil
}
// OnL1Head signals the driver that the L1 chain changed the "unsafe" block,
// also known as head of the chain, or "latest".
func (s *Driver) OnL1Head(ctx context.Context, unsafe eth.L1BlockRef) error {
select {
case <-ctx.Done():
return ctx.Err()
case s.l1HeadSig <- unsafe:
return nil
}
}
// OnL1Safe signals the driver that the L1 chain changed the "safe",
// also known as the justified checkpoint (as seen on L1 beacon-chain).
func (s *Driver) OnL1Safe(ctx context.Context, safe eth.L1BlockRef) error {
select {
case <-ctx.Done():
return ctx.Err()
case s.l1SafeSig <- safe:
return nil
}
}
func (s *Driver) OnL1Finalized(ctx context.Context, finalized eth.L1BlockRef) error {
select {
case <-ctx.Done():
return ctx.Err()
case s.l1FinalizedSig <- finalized:
return nil
}
}
func (s *Driver) OnUnsafeL2Payload(ctx context.Context, envelope *eth.ExecutionPayloadEnvelope) error {
select {
case <-ctx.Done():
return ctx.Err()
case s.unsafeL2Payloads <- envelope:
return nil
}
}
// the eventLoop responds to L1 changes and internal timers to produce L2 blocks.
func (s *Driver) eventLoop() {
defer s.wg.Done()
s.log.Info("State loop started")
defer s.log.Info("State loop returned")
defer s.driverCancel()
// reqStep requests a derivation step nicely, with a delay if this is a reattempt, or not at all if we already scheduled a reattempt.
reqStep := func() {
s.emitter.Emit(StepReqEvent{})
}
// We call reqStep right away to finish syncing to the tip of the chain if we're behind.
// reqStep will also be triggered when the L1 head moves forward or if there was a reorg on the
// L1 chain that we need to handle.
reqStep()
sequencerTimer := time.NewTimer(0)
var sequencerCh <-chan time.Time
planSequencerAction := func() {
delay := s.sequencer.PlanNextSequencerAction()
sequencerCh = sequencerTimer.C
if len(sequencerCh) > 0 { // empty if not already drained before resetting
<-sequencerCh
}
sequencerTimer.Reset(delay)
}
// Create a ticker to check if there is a gap in the engine queue. Whenever
// there is, we send requests to sync source to retrieve the missing payloads.
syncCheckInterval := time.Duration(s.Config.BlockTime) * time.Second * 2
altSyncTicker := time.NewTicker(syncCheckInterval)
defer altSyncTicker.Stop()
lastUnsafeL2 := s.Engine.UnsafeL2Head()
for {
if s.driverCtx.Err() != nil { // don't try to schedule/handle more work when we are closing.
return
}
if s.drain != nil {
// While event-processing is synchronous we have to drain
// (i.e. process all queued-up events) before creating any new events.
if err := s.drain(); err != nil {
if s.driverCtx.Err() != nil {
return
}
s.log.Error("unexpected error from event-draining", "err", err)
}
}
// If we are sequencing, and the L1 state is ready, update the trigger for the next sequencer action.
// This may adjust at any time based on fork-choice changes or previous errors.
// And avoid sequencing if the derivation pipeline indicates the engine is not ready.
if s.driverConfig.SequencerEnabled && !s.driverConfig.SequencerStopped &&
s.statusTracker.L1Head() != (eth.L1BlockRef{}) && s.Derivation.DerivationReady() {
if s.driverConfig.SequencerMaxSafeLag > 0 && s.Engine.SafeL2Head().Number+s.driverConfig.SequencerMaxSafeLag <= s.Engine.UnsafeL2Head().Number {
// If the safe head has fallen behind by a significant number of blocks, delay creating new blocks
// until the safe lag is below SequencerMaxSafeLag.
if sequencerCh != nil {
s.log.Warn(
"Delay creating new block since safe lag exceeds limit",
"safe_l2", s.Engine.SafeL2Head(),
"unsafe_l2", s.Engine.UnsafeL2Head(),
)
sequencerCh = nil
}
} else if s.sequencer.BuildingOnto().ID() != s.Engine.UnsafeL2Head().ID() {
// If we are sequencing, and the L1 state is ready, update the trigger for the next sequencer action.
// This may adjust at any time based on fork-choice changes or previous errors.
//
// update sequencer time if the head changed
planSequencerAction()
}
} else {
sequencerCh = nil
}
// If the engine is not ready, or if the L2 head is actively changing, then reset the alt-sync:
// there is no need to request L2 blocks when we are syncing already.
if head := s.Engine.UnsafeL2Head(); head != lastUnsafeL2 || !s.Derivation.DerivationReady() {
lastUnsafeL2 = head
altSyncTicker.Reset(syncCheckInterval)
}
select {
case <-sequencerCh:
// the payload publishing is handled by the async gossiper, which will begin gossiping as soon as available
// so, we don't need to receive the payload here
_, err := s.sequencer.RunNextSequencerAction(s.driverCtx, s.asyncGossiper, s.sequencerConductor)
if errors.Is(err, derive.ErrReset) {
s.Emitter.Emit(rollup.ResetEvent{})
} else if err != nil {
s.log.Error("Sequencer critical error", "err", err)
return
}
planSequencerAction() // schedule the next sequencer action to keep the sequencing looping
case <-altSyncTicker.C:
// Check if there is a gap in the current unsafe payload queue.
ctx, cancel := context.WithTimeout(s.driverCtx, time.Second*2)
err := s.checkForGapInUnsafeQueue(ctx)
cancel()
if err != nil {
s.log.Warn("failed to check for unsafe L2 blocks to sync", "err", err)
}
case envelope := <-s.unsafeL2Payloads:
// If we are doing CL sync or done with engine syncing, fallback to the unsafe payload queue & CL P2P sync.
if s.SyncCfg.SyncMode == sync.CLSync || !s.Engine.IsEngineSyncing() {
s.log.Info("Optimistically queueing unsafe L2 execution payload", "id", envelope.ExecutionPayload.ID())
s.Emitter.Emit(clsync.ReceivedUnsafePayloadEvent{Envelope: envelope})
s.metrics.RecordReceivedUnsafePayload(envelope)
reqStep()
} else if s.SyncCfg.SyncMode == sync.ELSync {
ref, err := derive.PayloadToBlockRef(s.Config, envelope.ExecutionPayload)
if err != nil {
s.log.Info("Failed to turn execution payload into a block ref", "id", envelope.ExecutionPayload.ID(), "err", err)
continue
}
if ref.Number <= s.Engine.UnsafeL2Head().Number {
continue
}
s.log.Info("Optimistically inserting unsafe L2 execution payload to drive EL sync", "id", envelope.ExecutionPayload.ID())
if err := s.Engine.InsertUnsafePayload(s.driverCtx, envelope, ref); err != nil {
s.log.Warn("Failed to insert unsafe payload for EL sync", "id", envelope.ExecutionPayload.ID(), "err", err)
}
}
case newL1Head := <-s.l1HeadSig:
s.Emitter.Emit(status.L1UnsafeEvent{L1Unsafe: newL1Head})
reqStep() // a new L1 head may mean we have the data to not get an EOF again.
case newL1Safe := <-s.l1SafeSig:
s.Emitter.Emit(status.L1SafeEvent{L1Safe: newL1Safe})
// no step, justified L1 information does not do anything for L2 derivation or status
case newL1Finalized := <-s.l1FinalizedSig:
s.emitter.Emit(finality.FinalizeL1Event{FinalizedL1: newL1Finalized})
reqStep() // we may be able to mark more L2 data as finalized now
case <-s.sched.NextDelayedStep():
s.emitter.Emit(StepAttemptEvent{})
case <-s.sched.NextStep():
s.emitter.Emit(StepAttemptEvent{})
case respCh := <-s.stateReq:
respCh <- struct{}{}
case respCh := <-s.forceReset:
s.log.Warn("Derivation pipeline is manually reset")
s.Derivation.Reset()
s.metrics.RecordPipelineReset()
close(respCh)
case resp := <-s.startSequencer:
unsafeHead := s.Engine.UnsafeL2Head().Hash
if !s.driverConfig.SequencerStopped {
resp.err <- ErrSequencerAlreadyStarted
} else if !bytes.Equal(unsafeHead[:], resp.hash[:]) {
resp.err <- fmt.Errorf("block hash does not match: head %s, received %s", unsafeHead.String(), resp.hash.String())
} else {
if err := s.sequencerNotifs.SequencerStarted(); err != nil {
resp.err <- fmt.Errorf("sequencer start notification: %w", err)
continue
}
s.log.Info("Sequencer has been started")
s.driverConfig.SequencerStopped = false
close(resp.err)
planSequencerAction() // resume sequencing
}
case respCh := <-s.stopSequencer:
if s.driverConfig.SequencerStopped {
respCh <- hashAndError{err: ErrSequencerAlreadyStopped}
} else {
if err := s.sequencerNotifs.SequencerStopped(); err != nil {
respCh <- hashAndError{err: fmt.Errorf("sequencer start notification: %w", err)}
continue
}
s.log.Warn("Sequencer has been stopped")
s.driverConfig.SequencerStopped = true
// Cancel any inflight block building. If we don't cancel this, we can resume sequencing an old block
// even if we've received new unsafe heads in the interim, causing us to introduce a re-org.
s.sequencer.CancelBuildingBlock(s.driverCtx)
respCh <- hashAndError{hash: s.Engine.UnsafeL2Head().Hash}
}
case respCh := <-s.sequencerActive:
respCh <- !s.driverConfig.SequencerStopped
case <-s.driverCtx.Done():
return
}
}
}
// OnEvent handles broadcasted events.
// The Driver itself is a deriver to catch system-critical events.
// Other event-handling should be encapsulated into standalone derivers.
func (s *Driver) OnEvent(ev event.Event) bool {
switch x := ev.(type) {
case rollup.CriticalErrorEvent:
s.Log.Error("Derivation process critical error", "err", x.Err)
// we need to unblock event-processing to be able to close
go func() {
logger := s.Log
err := s.Close()
if err != nil {
logger.Error("Failed to shutdown driver on critical error", "err", err)
}
}()
return true
default:
return false
}
}
type SyncDeriver struct {
// The derivation pipeline is reset whenever we reorg.
// The derivation pipeline determines the new l2Safe.
Derivation DerivationPipeline
SafeHeadNotifs rollup.SafeHeadListener // notified when safe head is updated
CLSync CLSync
// The engine controller is used by the sequencer & Derivation components.
// We will also use it for EL sync in a future PR.
Engine EngineController
// Sync Mod Config
SyncCfg *sync.Config
Config *rollup.Config
L1 L1Chain
L2 L2Chain
Emitter event.Emitter
Log log.Logger
Ctx context.Context
Drain func() error
}
func (s *SyncDeriver) AttachEmitter(em event.Emitter) {
s.Emitter = em
}
func (s *SyncDeriver) OnEvent(ev event.Event) bool {
switch x := ev.(type) {
case StepEvent:
s.onStepEvent()
case rollup.ResetEvent:
s.onResetEvent(x)
case rollup.L1TemporaryErrorEvent:
s.Log.Warn("L1 temporary error", "err", x.Err)
s.Emitter.Emit(StepReqEvent{})
case rollup.EngineTemporaryErrorEvent:
s.Log.Warn("Engine temporary error", "err", x.Err)
// Make sure that for any temporarily failed attributes we retry processing.
s.Emitter.Emit(engine.PendingSafeRequestEvent{})
s.Emitter.Emit(StepReqEvent{})
case engine.EngineResetConfirmedEvent:
s.onEngineConfirmedReset(x)
case derive.DeriverIdleEvent:
// Once derivation is idle the system is healthy
// and we can wait for new inputs. No backoff necessary.
s.Emitter.Emit(ResetStepBackoffEvent{})
case derive.DeriverMoreEvent:
// If there is more data to process,
// continue derivation quickly
s.Emitter.Emit(StepReqEvent{ResetBackoff: true})
case engine.SafeDerivedEvent:
s.onSafeDerivedBlock(x)
default:
return false
}
return true
}
func (s *SyncDeriver) onSafeDerivedBlock(x engine.SafeDerivedEvent) {
if s.SafeHeadNotifs != nil && s.SafeHeadNotifs.Enabled() {
if err := s.SafeHeadNotifs.SafeHeadUpdated(x.Safe, x.DerivedFrom.ID()); err != nil {
// At this point our state is in a potentially inconsistent state as we've updated the safe head
// in the execution client but failed to post process it. Reset the pipeline so the safe head rolls back
// a little (it always rolls back at least 1 block) and then it will retry storing the entry
s.Emitter.Emit(rollup.ResetEvent{Err: fmt.Errorf("safe head notifications failed: %w", err)})
}
}
}
func (s *SyncDeriver) onEngineConfirmedReset(x engine.EngineResetConfirmedEvent) {
// If the listener update fails, we return,
// and don't confirm the engine-reset with the derivation pipeline.
// The pipeline will re-trigger a reset as necessary.
if s.SafeHeadNotifs != nil {
if err := s.SafeHeadNotifs.SafeHeadReset(x.Safe); err != nil {
s.Log.Error("Failed to warn safe-head notifier of safe-head reset", "safe", x.Safe)
return
}
if s.SafeHeadNotifs.Enabled() && x.Safe.ID() == s.Config.Genesis.L2 {
// The rollup genesis block is always safe by definition. So if the pipeline resets this far back we know
// we will process all safe head updates and can record genesis as always safe from L1 genesis.
// Note that it is not safe to use cfg.Genesis.L1 here as it is the block immediately before the L2 genesis
// but the contracts may have been deployed earlier than that, allowing creating a dispute game
// with a L1 head prior to cfg.Genesis.L1
l1Genesis, err := s.L1.L1BlockRefByNumber(s.Ctx, 0)
if err != nil {
s.Log.Error("Failed to retrieve L1 genesis, cannot notify genesis as safe block", "err", err)
return
}
if err := s.SafeHeadNotifs.SafeHeadUpdated(x.Safe, l1Genesis.ID()); err != nil {
s.Log.Error("Failed to notify safe-head listener of safe-head", "err", err)
return
}
}
}
s.Emitter.Emit(derive.ConfirmPipelineResetEvent{})
}
func (s *SyncDeriver) onStepEvent() {
s.Log.Debug("Sync process step")
// Note: while we refactor the SyncStep to be entirely event-based we have an intermediate phase
// where some things are triggered through events, and some through this synchronous step function.
// We just translate the results into their equivalent events,
// to merge the error-handling with that of the new event-based system.
err := s.SyncStep()
if err != nil && errors.Is(err, derive.EngineELSyncing) {
s.Log.Debug("Derivation process went idle because the engine is syncing", "unsafe_head", s.Engine.UnsafeL2Head(), "err", err)
s.Emitter.Emit(ResetStepBackoffEvent{})
} else if err != nil && errors.Is(err, derive.ErrReset) {
s.Emitter.Emit(rollup.ResetEvent{Err: err})
} else if err != nil && errors.Is(err, derive.ErrTemporary) {
s.Emitter.Emit(rollup.EngineTemporaryErrorEvent{Err: err})
} else if err != nil && errors.Is(err, derive.ErrCritical) {
s.Emitter.Emit(rollup.CriticalErrorEvent{Err: err})
} else if err != nil {
s.Log.Error("Derivation process error", "err", err)
s.Emitter.Emit(StepReqEvent{})
} else {
// Revisit SyncStep in 1/2 of a L2 block.
s.Emitter.Emit(StepDelayedReqEvent{Delay: (time.Duration(s.Config.BlockTime) * time.Second) / 2})
}
}
func (s *SyncDeriver) onResetEvent(x rollup.ResetEvent) {
// If the system corrupts, e.g. due to a reorg, simply reset it
s.Log.Warn("Deriver system is resetting", "err", x.Err)
s.Emitter.Emit(StepReqEvent{})
s.Emitter.Emit(engine.ResetEngineRequestEvent{})
}
// SyncStep performs the sequence of encapsulated syncing steps.
// Warning: this sequence will be broken apart as outlined in op-node derivers design doc.
func (s *SyncDeriver) SyncStep() error {
if err := s.Drain(); err != nil {
return err
}
s.Emitter.Emit(engine.TryBackupUnsafeReorgEvent{})
if err := s.Drain(); err != nil {
return err
}
s.Emitter.Emit(engine.TryUpdateEngineEvent{})
if err := s.Drain(); err != nil {
return err
}
if s.Engine.IsEngineSyncing() {
// The pipeline cannot move forwards if doing EL sync.
return derive.EngineELSyncing
}
// Any now processed forkchoice updates will trigger CL-sync payload processing, if any payload is queued up.
// Since we don't force attributes to be processed at this point,
// we cannot safely directly trigger the derivation, as that may generate new attributes that
// conflict with what attributes have not been applied yet.
// Instead, we request the engine to repeat where its pending-safe head is at.
// Upon the pending-safe signal the attributes deriver can then ask the pipeline
// to generate new attributes, if no attributes are known already.
s.Emitter.Emit(engine.PendingSafeRequestEvent{})
return nil
}
// ResetDerivationPipeline forces a reset of the derivation pipeline.
// It waits for the reset to occur. It simply unblocks the caller rather
// than fully cancelling the reset request upon a context cancellation.
func (s *Driver) ResetDerivationPipeline(ctx context.Context) error {
respCh := make(chan struct{}, 1)
select {
case <-ctx.Done():
return ctx.Err()
case s.forceReset <- respCh:
select {
case <-ctx.Done():
return ctx.Err()
case <-respCh:
return nil
}
}
}
func (s *Driver) StartSequencer(ctx context.Context, blockHash common.Hash) error {
if !s.driverConfig.SequencerEnabled {
return errors.New("sequencer is not enabled")
}
if isLeader, err := s.sequencerConductor.Leader(ctx); err != nil {
return fmt.Errorf("sequencer leader check failed: %w", err)
} else if !isLeader {
return errors.New("sequencer is not the leader, aborting.")
}
h := hashAndErrorChannel{
hash: blockHash,
err: make(chan error, 1),
}
select {
case <-ctx.Done():
return ctx.Err()
case s.startSequencer <- h:
select {
case <-ctx.Done():
return ctx.Err()
case e := <-h.err:
return e
}
}
}
func (s *Driver) StopSequencer(ctx context.Context) (common.Hash, error) {
if !s.driverConfig.SequencerEnabled {
return common.Hash{}, errors.New("sequencer is not enabled")
}
respCh := make(chan hashAndError, 1)
select {
case <-ctx.Done():
return common.Hash{}, ctx.Err()
case s.stopSequencer <- respCh:
select {
case <-ctx.Done():
return common.Hash{}, ctx.Err()
case he := <-respCh:
return he.hash, he.err
}
}
}
func (s *Driver) SequencerActive(ctx context.Context) (bool, error) {
if !s.driverConfig.SequencerEnabled {
return false, nil
}
respCh := make(chan bool, 1)
select {
case <-ctx.Done():
return false, ctx.Err()
case s.sequencerActive <- respCh:
select {
case <-ctx.Done():
return false, ctx.Err()
case active := <-respCh:
return active, nil
}
}
}
func (s *Driver) OverrideLeader(ctx context.Context) error {
return s.sequencerConductor.OverrideLeader(ctx)
}
// SyncStatus blocks the driver event loop and captures the syncing status.
func (s *Driver) SyncStatus(ctx context.Context) (*eth.SyncStatus, error) {
return s.statusTracker.SyncStatus(), nil
}
// BlockRefWithStatus blocks the driver event loop and captures the syncing status,
// along with an L2 block reference by number consistent with that same status.
// If the event loop is too busy and the context expires, a context error is returned.
func (s *Driver) BlockRefWithStatus(ctx context.Context, num uint64) (eth.L2BlockRef, *eth.SyncStatus, error) {
wait := make(chan struct{})
select {
case s.stateReq <- wait:
resp := s.statusTracker.SyncStatus()
ref, err := s.L2.L2BlockRefByNumber(ctx, num)
<-wait
return ref, resp, err
case <-ctx.Done():
return eth.L2BlockRef{}, nil, ctx.Err()
}
}
type hashAndError struct {
hash common.Hash
err error
}
type hashAndErrorChannel struct {
hash common.Hash
err chan error
}
// checkForGapInUnsafeQueue checks if there is a gap in the unsafe queue and attempts to retrieve the missing payloads from an alt-sync method.
// WARNING: This is only an outgoing signal, the blocks are not guaranteed to be retrieved.
// Results are received through OnUnsafeL2Payload.
func (s *Driver) checkForGapInUnsafeQueue(ctx context.Context) error {
start := s.Engine.UnsafeL2Head()
end := s.CLSync.LowestQueuedUnsafeBlock()
// Check if we have missing blocks between the start and end. Request them if we do.
if end == (eth.L2BlockRef{}) {
s.log.Debug("requesting sync with open-end range", "start", start)
return s.altSync.RequestL2Range(ctx, start, eth.L2BlockRef{})
} else if end.Number > start.Number+1 {
s.log.Debug("requesting missing unsafe L2 block range", "start", start, "end", end, "size", end.Number-start.Number)
return s.altSync.RequestL2Range(ctx, start, end)
}
return nil
}