-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathavx2.rs
288 lines (245 loc) · 9.68 KB
/
avx2.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
/*
* Copyright (c) 2023.
*
* This software is free software;
*
* You can redistribute it or modify it under terms of the MIT, Apache License or Zlib license
*/
#![cfg(any(target_arch = "x86", target_arch = "x86_64"))]
//! AVX optimised IDCT.
//!
//! Okay not thaat optimised.
//!
//!
//! # The implementation
//! The implementation is neatly broken down into two operations.
//!
//! 1. Test for zeroes
//! > There is a shortcut method for idct where when all AC values are zero, we can get the answer really quickly.
//! by scaling the 1/8th of the DCT coefficient of the block to the whole block and level shifting.
//!
//! 2. If above fails, we proceed to carry out IDCT as a two pass one dimensional algorithm.
//! IT does two whole scans where it carries out IDCT on all items
//! After each successive scan, data is transposed in register(thank you x86 SIMD powers). and the second
//! pass is carried out.
//!
//! The code is not super optimized, it produces bit identical results with scalar code hence it's
//! `mm256_add_epi16`
//! and it also has the advantage of making this implementation easy to maintain.
#![cfg(feature = "x86")]
#![allow(dead_code)]
#[cfg(target_arch = "x86")]
use core::arch::x86::*;
#[cfg(target_arch = "x86_64")]
use core::arch::x86_64::*;
use crate::unsafe_utils::{transpose, YmmRegister};
const SCALE_BITS: i32 = 512 + 65536 + (128 << 17);
/// SAFETY
/// ------
///
/// It is the responsibility of the CALLER to ensure that this function is
/// called in contexts where the CPU supports it
///
///
/// For documentation see module docs.
pub fn idct_avx2(in_vector: &mut [i32; 64], out_vector: &mut [i16], stride: usize) {
unsafe {
// We don't call this method directly because we need to flag the code function
// with #[target_feature] so that the compiler does do weird stuff with
// it
idct_int_avx2_inner(in_vector, out_vector, stride);
}
}
#[target_feature(enable = "avx2")]
#[allow(
clippy::too_many_lines,
clippy::cast_possible_truncation,
clippy::similar_names,
clippy::op_ref,
unused_assignments,
clippy::zero_prefixed_literal
)]
pub unsafe fn idct_int_avx2_inner(
in_vector: &mut [i32; 64], out_vector: &mut [i16], stride: usize
) {
let mut pos = 0;
// load into registers
//
// We sign extend i16's to i32's and calculate them with extended precision and
// later reduce them to i16's when we are done carrying out IDCT
let rw0 = _mm256_loadu_si256(in_vector[00..].as_ptr().cast());
let rw1 = _mm256_loadu_si256(in_vector[08..].as_ptr().cast());
let rw2 = _mm256_loadu_si256(in_vector[16..].as_ptr().cast());
let rw3 = _mm256_loadu_si256(in_vector[24..].as_ptr().cast());
let rw4 = _mm256_loadu_si256(in_vector[32..].as_ptr().cast());
let rw5 = _mm256_loadu_si256(in_vector[40..].as_ptr().cast());
let rw6 = _mm256_loadu_si256(in_vector[48..].as_ptr().cast());
let rw7 = _mm256_loadu_si256(in_vector[56..].as_ptr().cast());
// Forward DCT and quantization may cause all the AC terms to be zero, for such
// cases we can try to accelerate it
// Basically the poop is that whenever the array has 63 zeroes, its idct is
// (arr[0]>>3)or (arr[0]/8) propagated to all the elements.
// We first test to see if the array contains zero elements and if it does, we go the
// short way.
//
// This reduces IDCT overhead from about 39% to 18 %, almost half
// Do another load for the first row, we don't want to check DC value, because
// we only care about AC terms
let rw8 = _mm256_loadu_si256(in_vector[1..].as_ptr().cast());
let zero = _mm256_setzero_si256();
let mut non_zero = 0;
non_zero += _mm256_movemask_epi8(_mm256_cmpeq_epi32(rw8, zero));
non_zero += _mm256_movemask_epi8(_mm256_cmpeq_epi32(rw1, zero));
non_zero += _mm256_movemask_epi8(_mm256_cmpeq_epi32(rw2, zero));
non_zero += _mm256_movemask_epi8(_mm256_cmpeq_epi64(rw3, zero));
non_zero += _mm256_movemask_epi8(_mm256_cmpeq_epi64(rw4, zero));
non_zero += _mm256_movemask_epi8(_mm256_cmpeq_epi64(rw5, zero));
non_zero += _mm256_movemask_epi8(_mm256_cmpeq_epi64(rw6, zero));
non_zero += _mm256_movemask_epi8(_mm256_cmpeq_epi64(rw7, zero));
if non_zero == -8 {
// AC terms all zero, idct of the block is is ( coeff[0] * qt[0] )/8 + 128 (bias)
// (and clamped to 255)
let idct_value = _mm_set1_epi16(((in_vector[0] >> 3) + 128).clamp(0, 255) as i16);
macro_rules! store {
($pos:tt,$value:tt) => {
// store
_mm_storeu_si128(
out_vector
.get_mut($pos..$pos + 8)
.unwrap()
.as_mut_ptr()
.cast(),
$value
);
$pos += stride;
};
}
store!(pos, idct_value);
store!(pos, idct_value);
store!(pos, idct_value);
store!(pos, idct_value);
store!(pos, idct_value);
store!(pos, idct_value);
store!(pos, idct_value);
store!(pos, idct_value);
return;
}
let mut row0 = YmmRegister { mm256: rw0 };
let mut row1 = YmmRegister { mm256: rw1 };
let mut row2 = YmmRegister { mm256: rw2 };
let mut row3 = YmmRegister { mm256: rw3 };
let mut row4 = YmmRegister { mm256: rw4 };
let mut row5 = YmmRegister { mm256: rw5 };
let mut row6 = YmmRegister { mm256: rw6 };
let mut row7 = YmmRegister { mm256: rw7 };
macro_rules! dct_pass {
($SCALE_BITS:tt,$scale:tt) => {
// There are a lot of ways to do this
// but to keep it simple(and beautiful), ill make a direct translation of the
// scalar code to also make this code fully transparent(this version and the non
// avx one should produce identical code.)
// even part
let p1 = (row2 + row6) * 2217;
let mut t2 = p1 + row6 * -7567;
let mut t3 = p1 + row2 * 3135;
let mut t0 = YmmRegister {
mm256: _mm256_slli_epi32((row0 + row4).mm256, 12)
};
let mut t1 = YmmRegister {
mm256: _mm256_slli_epi32((row0 - row4).mm256, 12)
};
let x0 = t0 + t3 + $SCALE_BITS;
let x3 = t0 - t3 + $SCALE_BITS;
let x1 = t1 + t2 + $SCALE_BITS;
let x2 = t1 - t2 + $SCALE_BITS;
let p3 = row7 + row3;
let p4 = row5 + row1;
let p1 = row7 + row1;
let p2 = row5 + row3;
let p5 = (p3 + p4) * 4816;
t0 = row7 * 1223;
t1 = row5 * 8410;
t2 = row3 * 12586;
t3 = row1 * 6149;
let p1 = p5 + p1 * -3685;
let p2 = p5 + (p2 * -10497);
let p3 = p3 * -8034;
let p4 = p4 * -1597;
t3 += p1 + p4;
t2 += p2 + p3;
t1 += p2 + p4;
t0 += p1 + p3;
row0.mm256 = _mm256_srai_epi32((x0 + t3).mm256, $scale);
row1.mm256 = _mm256_srai_epi32((x1 + t2).mm256, $scale);
row2.mm256 = _mm256_srai_epi32((x2 + t1).mm256, $scale);
row3.mm256 = _mm256_srai_epi32((x3 + t0).mm256, $scale);
row4.mm256 = _mm256_srai_epi32((x3 - t0).mm256, $scale);
row5.mm256 = _mm256_srai_epi32((x2 - t1).mm256, $scale);
row6.mm256 = _mm256_srai_epi32((x1 - t2).mm256, $scale);
row7.mm256 = _mm256_srai_epi32((x0 - t3).mm256, $scale);
};
}
// Process rows
dct_pass!(512, 10);
transpose(
&mut row0, &mut row1, &mut row2, &mut row3, &mut row4, &mut row5, &mut row6, &mut row7
);
// process columns
dct_pass!(SCALE_BITS, 17);
transpose(
&mut row0, &mut row1, &mut row2, &mut row3, &mut row4, &mut row5, &mut row6, &mut row7
);
// Pack i32 to i16's,
// clamp them to be between 0-255
// Undo shuffling
// Store back to array
macro_rules! permute_store {
($x:tt,$y:tt,$index:tt,$out:tt) => {
let a = _mm256_packs_epi32($x, $y);
// Clamp the values after packing, we can clamp more values at once
let b = clamp_avx(a);
// /Undo shuffling
let c = _mm256_permute4x64_epi64(b, shuffle(3, 1, 2, 0));
// store first vector
_mm_storeu_si128(
($out)
.get_mut($index..$index + 8)
.unwrap()
.as_mut_ptr()
.cast(),
_mm256_extractf128_si256::<0>(c)
);
$index += stride;
// second vector
_mm_storeu_si128(
($out)
.get_mut($index..$index + 8)
.unwrap()
.as_mut_ptr()
.cast(),
_mm256_extractf128_si256::<1>(c)
);
$index += stride;
};
}
// Pack and write the values back to the array
permute_store!((row0.mm256), (row1.mm256), pos, out_vector);
permute_store!((row2.mm256), (row3.mm256), pos, out_vector);
permute_store!((row4.mm256), (row5.mm256), pos, out_vector);
permute_store!((row6.mm256), (row7.mm256), pos, out_vector);
}
#[inline]
#[target_feature(enable = "avx2")]
unsafe fn clamp_avx(reg: __m256i) -> __m256i {
let min_s = _mm256_set1_epi16(0);
let max_s = _mm256_set1_epi16(255);
let max_v = _mm256_max_epi16(reg, min_s); //max(a,0)
let min_v = _mm256_min_epi16(max_v, max_s); //min(max(a,0),255)
return min_v;
}
/// A copy of `_MM_SHUFFLE()` that doesn't require
/// a nightly compiler
#[inline]
const fn shuffle(z: i32, y: i32, x: i32, w: i32) -> i32 {
((z << 6) | (y << 4) | (x << 2) | w)
}