-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathheap_merge.cpp
252 lines (199 loc) · 6.39 KB
/
heap_merge.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
//4.1 Слияние массивов.
//Напишите программу, которая использует кучу для слияния K отсортированных массивов суммарной длиной N.
//Требования: время работы O(N * logK). Ограничение на размер кучи O(K)..
//Формат входных данных: Сначала вводится количество массивов K. Затем по очереди размер каждого массива и элементы массива. Каждый массив упорядочен по возрастанию.
//Формат выходных данных: Итоговый отсортированный массив.
#include <iostream>
#include <cstring>
#define STARTING_BUFF_CAPACITY 3
#define ARRAY_INCREASING_COEFF 2
template<class T>
struct DefaultComparator {
bool operator()(const T &l, const T &r) {
return l < r;
}
};
typedef struct arr_represent {
bool operator<(const arr_represent &r) const {
return this->arr[this->idx_max] < r.arr[r.idx_max];
}
int *arr;
size_t idx_max;
size_t arr_size;
} arr_represent;
template<class T, class Comparator = DefaultComparator<T>>
class Heap {
public:
explicit Heap(Comparator comp = Comparator()) {
size = 0;
capacity = STARTING_BUFF_CAPACITY;
buffer = new T[STARTING_BUFF_CAPACITY];
};
Heap(const T *arr, size_t size_arg, Comparator comp = Comparator()) : size(size_arg), capacity(2 * size_arg) {
buffer = new T[capacity];
for (size_t i = 0; i < size_arg; ++i) {
buffer[i] = arr[i]; // тут можно поспорить, но я подумал что будет неправильно
} // портить массив который нам дают на вход
heapify();
};
~Heap() {
delete[] buffer;
};
void pop();
void push(const T &val);
const T &top() const;
Heap(const Heap &) = delete;
Heap(Heap &&) = delete;
Heap &operator=(const Heap &) = delete;
Heap &operator=(Heap &&) = delete;
bool empty() const;
size_t get_size() const;
private:
void heapify();
void sift_up(size_t idx);
void sift_down(size_t idx);
void resize();
Comparator comp;
T *buffer;
size_t size;
size_t capacity;
};
template<class T, class Comparator>
size_t Heap<T, Comparator>::get_size() const {
return size;
}
template<class T, class Comparator>
bool Heap<T, Comparator>::empty() const {
return size == 0;
}
template<class T, class Comparator>
void Heap<T, Comparator>::sift_up(size_t idx) {
while (idx > 0) {
size_t parent = 0;
if (idx > 1) {
parent = (idx - 1) / 2;
}
if (comp(buffer[parent], buffer[idx])) {
return;
}
std::swap(buffer[idx], buffer[parent]);
idx = parent;
}
}
template<class T, class Comparator>
void Heap<T, Comparator>::sift_down(size_t idx) {
if (empty())
return;
while (2 * idx + 1 <= size - 1) {
size_t idx_min = idx;
if (comp(buffer[2 * idx + 1], buffer[idx_min])) {
idx_min = 2 * idx + 1;
}
if (((2 * idx) + 2 <= size - 1) && comp(buffer[(2 * idx) + 2], buffer[idx_min])) {
idx_min = (2 * idx) + 2;
}
if (idx == idx_min) {
break;
}
std::swap(buffer[idx], buffer[idx_min]);
idx = idx_min;
}
}
template<class T, class Comparator>
void Heap<T, Comparator>::push(const T &val) {
if (size == capacity) {
resize();
}
buffer[size] = val;
size++;
sift_up(size - 1);
}
template<class T, class Comparator>
const T &Heap<T, Comparator>::top() const {
return buffer[0];
}
template<class T, class Comparator>
void Heap<T, Comparator>::pop() {
if (size) {
buffer[0] = buffer[size - 1];
size--;
sift_down(0);
}
}
template<class T, class Comparator>
void Heap<T, Comparator>::heapify() {
size_t start_idx = ((size - 1) - 1) / 2;
if (start_idx >= 0 && size > 1) {
for (size_t i = start_idx; i > 0; i--) {
sift_down(i);
}
sift_down(0);
}
}
template<class T, class Comparator>
void Heap<T, Comparator>::resize() {
capacity *= ARRAY_INCREASING_COEFF;
T *newData = new T[capacity];
std::copy(buffer, buffer + size - 1, newData);
delete[] buffer;
buffer = newData;
}
//..........................................................................
auto heap_merge_sort(Heap<arr_represent> *heap, size_t size_of_array) {
auto output_array = new int[size_of_array];
for (size_t i = 0; i < size_of_array; ++i) {
arr_represent tmp = heap->top();
heap->pop();
output_array[i] = tmp.arr[tmp.idx_max];
tmp.idx_max++;
if (tmp.idx_max < tmp.arr_size) {
heap->push(tmp);
} else {
delete[] tmp.arr;
}
}
return output_array;
}
int main() {
size_t numb_of_arrays = 0;
std::cin >> numb_of_arrays;
size_t total_amount_of_elem = 0;
if (numb_of_arrays == 0) {
return 0;
}
if (numb_of_arrays == 1) {
std::cin >> total_amount_of_elem;
for (size_t i = 0; i < total_amount_of_elem; i++) {
int tmp = 0;
std::cin >> tmp;
std::cout << tmp << ' ';
}
return 0;
}
auto *array_of_arrays = new arr_represent[numb_of_arrays];
for (size_t k = 0; k < numb_of_arrays; ++k) {
size_t amount_of_elem_in_arr = 0;
std::cin >> amount_of_elem_in_arr;
if (amount_of_elem_in_arr == 0) {
continue;
}
total_amount_of_elem += amount_of_elem_in_arr;
auto *array = new arr_represent;
array->arr = new int[amount_of_elem_in_arr];
for (size_t j = 0; j < amount_of_elem_in_arr; j++) {
std::cin >> array->arr[j];
}
array->idx_max = 0;
array->arr_size = amount_of_elem_in_arr;
array_of_arrays[k] = *array;
delete array;
}
Heap heap(array_of_arrays, numb_of_arrays);
auto result_sorted_arr = heap_merge_sort(&heap, total_amount_of_elem);
for (size_t i = 0; i < total_amount_of_elem; i++) {
std::cout << result_sorted_arr[i] << ' ';
}
delete[] result_sorted_arr;
delete[] array_of_arrays;
return 0;
}