-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathnn.py
207 lines (169 loc) · 6.5 KB
/
nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import torch
import torch.nn as nn
import logging
LOG = logging.getLogger(__name__)
class IDMLP(nn.Module):
def __init__(
self,
indim: int,
outdim: int,
hidden_dim: int,
n_hidden: int,
init: str = None,
act: str = None,
rank: int = None,
n_modes: int = None
):
super().__init__()
LOG.info(f"Building IDMLP ({init}) {[indim] * (n_hidden + 2)}")
self.layers = nn.ModuleList(
[
LRLinear(indim, indim, rank=rank, relu=idx < n_hidden, init=init, n_modes=n_modes)
for idx in range(n_hidden + 1)
]
)
def forward(self, x, mode=None):
for layer in self.layers:
x = layer(x, mode=mode)
return x
class LRLinear(nn.Module):
def __init__(self, inf, outf, rank: int = None, relu=False, init="id", n_modes=None):
super().__init__()
mid_dim = min(rank, inf)
if init == "id":
self.u = nn.Parameter(torch.zeros(outf, mid_dim))
self.v = nn.Parameter(torch.randn(mid_dim, inf))
elif init == "xavier":
self.u = nn.Parameter(torch.empty(outf, mid_dim))
self.v = nn.Parameter(torch.empty(mid_dim, inf))
nn.init.xavier_uniform_(self.u.data, gain=nn.init.calculate_gain("relu"))
nn.init.xavier_uniform_(self.v.data, gain=1.0)
else:
raise ValueError(f"Unrecognized initialization {init}")
if n_modes is not None:
self.mode_shift = nn.Embedding(n_modes, outf)
self.mode_shift.weight.data.zero_()
self.mode_scale = nn.Embedding(n_modes, outf)
self.mode_scale.weight.data.fill_(1)
self.n_modes = n_modes
self.bias = nn.Parameter(torch.zeros(outf))
self.inf = inf
self.init = init
def forward(self, x, mode=None):
if mode is not None:
assert self.n_modes is not None, "Linear got a mode but wasn't initialized for it"
assert mode < self.n_modes, f"Input mode {mode} outside of range {self.n_modes}"
assert x.shape[-1] == self.inf, f"Input wrong dim ({x.shape}, {self.inf})"
pre_act = (self.u @ (self.v @ x.T)).T
if self.bias is not None:
pre_act += self.bias
if mode is not None:
if not isinstance(mode, torch.Tensor):
mode = torch.tensor(mode).to(x.device)
scale, shift = self.mode_scale(mode), self.mode_shift(mode)
pre_act = pre_act * scale + shift
# need clamp instead of relu so gradient at 0 isn't 0
acts = pre_act.clamp(min=0)
if self.init == "id":
return acts + x
else:
return acts
class MLP(nn.Module):
def __init__(
self,
indim: int,
outdim: int,
hidden_dim: int,
n_hidden: int,
init: str = "xavier_uniform",
act: str = "relu",
rank: int = None,
):
super().__init__()
self.init = init
if act == "relu":
self.act = nn.ReLU()
elif act == "learned":
self.act = ActMLP(10, 1)
else:
raise ValueError(f"Unrecognized activation function '{act}'")
if hidden_dim is None:
hidden_dim = outdim * 2
if init.startswith("id") and outdim != indim:
LOG.info(f"Overwriting outdim ({outdim}) to be indim ({indim})")
outdim = indim
if init == "id":
old_hidden_dim = hidden_dim
if hidden_dim < indim * 2:
hidden_dim = indim * 2
if hidden_dim % indim != 0:
hidden_dim += hidden_dim % indim
if old_hidden_dim != hidden_dim:
LOG.info(
f"Overwriting hidden dim ({old_hidden_dim}) to be {hidden_dim}"
)
if init == "id_alpha":
self.alpha = nn.Parameter(torch.zeros(1, outdim))
dims = [indim] + [hidden_dim] * n_hidden + [outdim]
LOG.info(f"Building ({init}) MLP: {dims} (rank {rank})")
layers = []
for idx, (ind, outd) in enumerate(zip(dims[:-1], dims[1:])):
if rank is None:
layers.append(nn.Linear(ind, outd))
else:
layers.append(LRLinear(ind, outd, rank=rank))
if idx < n_hidden:
layers.append(self.act)
if rank is None:
if init == "id":
if n_hidden > 0:
layers[0].weight.data = torch.eye(indim).repeat(
hidden_dim // indim, 1
)
layers[0].weight.data[hidden_dim // 2:] *= -1
layers[-1].weight.data = torch.eye(outdim).repeat(
1, hidden_dim // outdim
)
layers[-1].weight.data[:, hidden_dim // 2:] *= -1
layers[-1].weight.data /= (hidden_dim // indim) / 2.0
for layer in layers:
if isinstance(layer, nn.Linear):
if init == "ortho":
nn.init.orthogonal_(layer.weight)
elif init == "id":
if layer.weight.shape[0] == layer.weight.shape[1]:
layer.weight.data = torch.eye(hidden_dim)
else:
gain = 3 ** 0.5 if (layer is layers[-1]) else 1.0
nn.init.xavier_uniform_(layer.weight, gain=gain)
layer.bias.data[:] = 0
layers[-1].bias = None
self.mlp = nn.Sequential(*layers)
def forward(self, x):
if self.init == "id_alpha":
return x + self.alpha * self.mlp(x)
else:
return self.mlp(x)
if __name__ == "__main__":
logging.basicConfig(
format="%(asctime)s - %(levelname)s [%(filename)s:%(lineno)d] %(message)s",
level=logging.INFO,
)
m0 = MLP(1000, 1000, 1500, 3)
m1 = MLP(1000, 1000, 1500, 3, init="id")
m2 = MLP(1000, 1000, 1500, 3, init="id_alpha")
m3 = MLP(1000, 1000, 1500, 3, init="ortho", act="learned")
x = 0.01 * torch.randn(999, 1000)
y0 = m0(x)
y1 = m1(x)
y2 = m2(x)
y3 = m3(x)
print("y0", (y0 - x).abs().max())
print("y1", (y1 - x).abs().max())
print("y2", (y2 - x).abs().max())
print("y3", (y3 - x).abs().max())
assert not torch.allclose(y0, x)
assert torch.allclose(y1, x)
assert torch.allclose(y2, x)
assert not torch.allclose(y3, x)
import pdb; pdb.set_trace() # fmt: skip