-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEXP4.m
55 lines (45 loc) · 1.53 KB
/
EXP4.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
classdef EXP4<handle
% EXP 3 strategy for one player
properties
nbActions
w
advices % the advice matrix is the set of advice vectors [N x K]
lastAction
Gamma
end
methods
function self = EXP4(nbActions,advices)
self.nbActions = nbActions;
self.Gamma = 0.1;
self.advices = advices;
end
function self = init(self)
[n, ~] = size(self.advices);
self.w = ones(n, 1);
end
function [action] = play(self)
advices = self.advices;
Gamma = self.Gamma;
W = sum(self.w);
[N, K] = size(self.advices);
matrixW = repmat(self.w, 1, K);
p = ((1-Gamma)/W)*sum(matrixW.*advices, 1) + Gamma/K;
action = simu(p);
self.lastAction = action;
end
function self = getReward(self,r)
advices = self.advices;
Gamma = self.Gamma;
W = sum(self.w);
[N, K] = size(self.advices);
matrixW = repmat(self.w, 1, K);
p = ((1-Gamma)/W)*sum(matrixW.*advices, 1) + Gamma/K;
x_hat = zeros(size(p));
x_hat(self.lastAction) = r/p(self.lastAction);
y_hat = advices*(x_hat');
y_hat = y_hat';
self.w = self.w.*(exp((Gamma/K)*y_hat))';
% advices = (advices, lastAction, r);
end
end
end