-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathplot-de-districts-increase-histogram.py
executable file
·357 lines (294 loc) · 11.4 KB
/
plot-de-districts-increase-histogram.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
#!/usr/bin/env python3.10
# by Dr. Torben Menke https://entorb.net
# https://github.com/entorb/COVID-19-Coronavirus-German-Regions
"""
converts the incidence data into a kind of histogram time series
"""
# TODO:
# use rolling for finding the slope
# https://stackoverflow.com/questions/49838315/python-pandas-apply-a-function-to-dataframe-rolling
import glob
import locale
import matplotlib.pyplot as plt
import pandas as pd
import helper
# Set German date format for plots: Okt instead of Oct
locale.setlocale(locale.LC_ALL, "de_DE.UTF-8")
# 1. create empty data frame
# 2. loop over all district data files, extract their 7-day incidence and increment the relevant field in the data frame
# 3. plot
# 4. to the same for deaths
# 5. to the same for the 7-day chance of the incidence in %
# TODO: 2 functions: prepare data and plot data
def read_and_prepare_data():
# create empty data frame, based on data for Hamburg
df_file = pd.read_csv(
"data/de-districts/de-district_timeseries-02000.tsv",
sep="\t",
# parse_dates=[
# "Date",
# ],
# index_col="Date",
)
df = pd.DataFrame()
# df['Date'] = df_file['Date']
# use date as index
df["Date"] = pd.to_datetime(df_file["Date"], format="%Y-%m-%d")
df.set_index(["Date"], inplace=True)
# incidence groups
# =0, <5, <10, <25, <50, <100, <200, >=200
# df['0'] = 0
# df['5'] = 0
# df['10'] = 0
# df['25'] = 0
# df['50'] = 0
# df['100'] = 0
# df['200'] = 0
# df['400'] = 0
# df['999'] = 0
df[">0"] = 0
df[">5"] = 0
df[">10"] = 0
df[">25"] = 0
df[">50"] = 0
df[">100"] = 0
df[">200"] = 0
df[">400"] = 0
# df['=0'] = 0
# df['<5'] = 0
# df['<10'] = 0
# df['<25'] = 0
# df['<50'] = 0
# df['<100'] = 0
# df['<200'] = 0
# df['<400'] = 0
df["+1%"] = 0
df["+25%"] = 0
df["+50%"] = 0
df["+100%"] = 0
df["+200%"] = 0
df["-1%"] = 0
df["-25%"] = 0
df["-50%"] = 0
df["-75%"] = 0
df["-100%"] = 0
count = 0
# loop over all districts data file and read them as data frames
for filename in glob.glob("data/de-districts/de-district_timeseries-*.tsv"):
if "16056" in filename:
# Eisenach problem, again...
continue
df_file = pd.read_csv(
filename,
sep="\t",
index_col="Date",
parse_dates=[
"Date",
],
)
# df_file["Date"] = pd.to_datetime(df_file["Date"], format="%Y-%m-%d")
# df_file.set_index(["Date"], inplace=True)
# convert Cases_Last_Week_Per_Million to Cases_Last_Week_Per_100000
df_file["Cases_Last_Week_Per_100000"] = (
df_file["Cases_Last_Week_Per_Million"] / 10
)
# is_000 = df_file['Cases_Last_Week_Per_100000'] == 0
# is_005 = (df_file['Cases_Last_Week_Per_100000'] > 0) & (
# df_file['Cases_Last_Week_Per_100000'] < 5)
# is_010 = (df_file['Cases_Last_Week_Per_100000'] >= 5) & (
# df_file['Cases_Last_Week_Per_100000'] < 10)
# is_025 = (df_file['Cases_Last_Week_Per_100000'] >= 10) & (
# df_file['Cases_Last_Week_Per_100000'] < 25)
# is_050 = (df_file['Cases_Last_Week_Per_100000'] >= 25) & (
# df_file['Cases_Last_Week_Per_100000'] < 50)
# is_100 = (df_file['Cases_Last_Week_Per_100000'] >= 50) & (
# df_file['Cases_Last_Week_Per_100000'] < 100)
# is_200 = (df_file['Cases_Last_Week_Per_100000'] >= 100) & (
# df_file['Cases_Last_Week_Per_100000'] < 200)
# is_400 = (df_file['Cases_Last_Week_Per_100000'] >= 200) & (
# df_file['Cases_Last_Week_Per_100000'] < 400)
# is_999 = (df_file['Cases_Last_Week_Per_100000'] >= 400)
gt_000 = df_file["Cases_Last_Week_Per_100000"] > 0
gt_005 = df_file["Cases_Last_Week_Per_100000"] >= 5
gt_010 = df_file["Cases_Last_Week_Per_100000"] >= 10
gt_025 = df_file["Cases_Last_Week_Per_100000"] >= 25
gt_050 = df_file["Cases_Last_Week_Per_100000"] >= 50
gt_100 = df_file["Cases_Last_Week_Per_100000"] >= 100
gt_200 = df_file["Cases_Last_Week_Per_100000"] >= 200
gt_400 = df_file["Cases_Last_Week_Per_100000"] >= 400
# lt_005 = (df_file['Cases_Last_Week_Per_100000'] < 5)
# lt_010 = (df_file['Cases_Last_Week_Per_100000'] < 10)
# lt_025 = (df_file['Cases_Last_Week_Per_100000'] < 25)
# lt_050 = (df_file['Cases_Last_Week_Per_100000'] < 50)
# lt_100 = (df_file['Cases_Last_Week_Per_100000'] < 100)
# lt_200 = (df_file['Cases_Last_Week_Per_100000'] < 200)
# lt_400 = (df_file['Cases_Last_Week_Per_100000'] < 400)
# df['0'] += is_000 * 1
# df['5'] += is_005 * 1
# df['10'] += is_010 * 1
# df['25'] += is_025 * 1
# df['50'] += is_050 * 1
# df['100'] += is_100 * 1
# df['200'] += is_200 * 1
# df['400'] += is_400 * 1
# df['999'] += is_999 * 1
df[">0"] += gt_000 * 1
df[">5"] += gt_005 * 1
df[">10"] += gt_010 * 1
df[">25"] += gt_025 * 1
df[">50"] += gt_050 * 1
df[">100"] += gt_100 * 1
df[">200"] += gt_200 * 1
df[">400"] += gt_400 * 1
# df['=0'] += is_000 * 1
# df['<5'] += lt_005 * 1
# df['<10'] += lt_010 * 1
# df['<25'] += lt_025 * 1
# df['<50'] += lt_050 * 1
# df['<100'] += lt_100 * 1
# df['<200'] += lt_200 * 1
# df['<400'] += lt_400 * 1
# +X%
gt_p001p = df_file["Cases_Last_Week_7Day_Percent"] >= 1
gt_p025p = df_file["Cases_Last_Week_7Day_Percent"] >= 25
gt_p050p = df_file["Cases_Last_Week_7Day_Percent"] >= 50
gt_p100p = df_file["Cases_Last_Week_7Day_Percent"] >= 100
gt_p200p = df_file["Cases_Last_Week_7Day_Percent"] >= 200
gt_m001p = df_file["Cases_Last_Week_7Day_Percent"] <= -1
gt_m025p = df_file["Cases_Last_Week_7Day_Percent"] <= -25
gt_m050p = df_file["Cases_Last_Week_7Day_Percent"] <= -50
gt_m075p = df_file["Cases_Last_Week_7Day_Percent"] <= -75
gt_m100p = df_file["Cases_Last_Week_7Day_Percent"] <= -100
df["+1%"] += gt_p001p * 1
df["+25%"] += gt_p025p * 1
df["+50%"] += gt_p050p * 1
df["+100%"] += gt_p100p * 1
df["+200%"] += gt_p200p * 1
df["-1%"] += gt_m001p * 1
df["-25%"] += gt_m025p * 1
df["-50%"] += gt_m050p * 1
df["-75%"] += gt_m075p * 1
df["-100%"] += gt_m100p * 1
count += 1
# TODO
# if count >= 10:
# break
# print(df.tail())
df.to_csv("cache/hist-de-districts.csv")
return df
# TODO
# df = read_and_prepare_data()
# os.remove("cache/hist-de-districts.csv")
if (
helper.check_cache_file_available_and_recent(
fname="cache/hist-de-districts.csv",
max_age=0,
verbose=True,
)
is False
):
df = read_and_prepare_data()
else:
df = pd.read_csv(
"cache/hist-de-districts.csv",
parse_dates=[
"Date",
],
index_col="Date",
)
# df["Date"] = pd.to_datetime(df["Date"], format="%Y-%m-%d")
# df.set_index(["Date"], inplace=True)
date_last = pd.to_datetime(df.index[-1]).date()
def CntToPerc(x):
return x / 412 * 100
def PercToCnt(x):
return x / 100 * 412
# print(df)
def plot_hist_de_districts_Cases_Last_Week_Per_100000():
# initialize plot
axes = [None]
fig, axes[0] = plt.subplots(nrows=1, ncols=1, sharex=True, dpi=100, figsize=(8, 6))
# plt.style.use('default')
# plotting
# plt.ion()
# plt.close("all")
# plt.figure()
# df.plot(y='025')
# df_hist = df[['0', '5', '10', '25', '50', '100', '200', '400', '999']]
df_sums_gt = df[[">0", ">5", ">10", ">25", ">50", ">100", ">200", ">400"]]
# df_sums_lt = df[['=0', '<5', '<10', '<25',
# '<50', '<100', '<200', '<400', '>400']]
# df_hist.plot.bar(stacked=True, width=1.0)
# # plt.ylim(top=412)
# plt.savefig(fname='plots-python/hist-de-districts-bar.png', format='png')
# plt.show()
# print(df_sums_gt.head())
myPlot = df_sums_gt.plot() # noqa: F841
# fig, ax = myplot.subplots(constrained_layout=True)
# plt.ylabel('Anzahl')
plt.title("Anzahl der Landkreise pro Inzidenz-Intervall")
fig.set_tight_layout(True)
plt.fill_between(list(df_sums_gt.index.values), df_sums_gt[">0"])
plt.fill_between(list(df_sums_gt.index.values), df_sums_gt[">5"])
plt.fill_between(list(df_sums_gt.index.values), df_sums_gt[">10"])
plt.fill_between(list(df_sums_gt.index.values), df_sums_gt[">25"])
plt.fill_between(list(df_sums_gt.index.values), df_sums_gt[">50"])
plt.fill_between(list(df_sums_gt.index.values), df_sums_gt[">100"])
plt.fill_between(list(df_sums_gt.index.values), df_sums_gt[">200"])
plt.fill_between(list(df_sums_gt.index.values), df_sums_gt[">400"])
# secaxy = plt.secondary_yaxis('right', functions=(CntToPerc, PercToCnt))
# secaxy.set_ylabel('Percent')
helper.mpl_add_text_source(source="RKI", date=date_last)
plt.ylim(0, 412)
plt.xlabel("")
plt.ylabel("")
plt.savefig(
fname="plots-python/hist-de-districts-Cases_Last_Week_Per_100000.png",
format="png",
)
# plt.show()
def plot_hist_de_districts_Cases_Last_Week_7Day_Percent_Incr():
# initialize plot
axes = [None]
fig, axes[0] = plt.subplots(nrows=1, ncols=1, sharex=True, dpi=100, figsize=(8, 6))
df_sums_gt = df[["+1%", "+25%", "+50%", "+100%", "+200%"]]
myPlot = df_sums_gt.plot() # noqa: F841
plt.title("Anzahl der Landkreise pro Inzidenz-Anstiegs-Intervall")
fig.set_tight_layout(True)
plt.fill_between(list(df_sums_gt.index.values), df_sums_gt["+1%"])
plt.fill_between(list(df_sums_gt.index.values), df_sums_gt["+25%"])
plt.fill_between(list(df_sums_gt.index.values), df_sums_gt["+50%"])
plt.fill_between(list(df_sums_gt.index.values), df_sums_gt["+100%"])
plt.fill_between(list(df_sums_gt.index.values), df_sums_gt["+200%"])
helper.mpl_add_text_source(source="RKI", date=date_last)
plt.ylim(0, 412)
plt.xlabel("")
plt.ylabel("")
plt.savefig(
fname="plots-python/hist-de-districts-Cases_Last_Week_7Day_Percent-Incr.png",
format="png",
)
def plot_hist_de_districts_Cases_Last_Week_7Day_Percent_Decr():
# initialize plot
axes = [None]
fig, axes[0] = plt.subplots(nrows=1, ncols=1, sharex=True, dpi=100, figsize=(8, 6))
df_sums_gt = df[["-1%", "-25%", "-50%", "-75%", "-100%"]]
myPlot = df_sums_gt.plot() # noqa: F841
plt.title("Anzahl der Landkreise pro Inzidenz-Abnahme-Intervall")
fig.set_tight_layout(True)
plt.fill_between(list(df_sums_gt.index.values), df_sums_gt["-1%"])
plt.fill_between(list(df_sums_gt.index.values), df_sums_gt["-25%"])
plt.fill_between(list(df_sums_gt.index.values), df_sums_gt["-50%"])
plt.fill_between(list(df_sums_gt.index.values), df_sums_gt["-75%"])
plt.fill_between(list(df_sums_gt.index.values), df_sums_gt["-100%"])
helper.mpl_add_text_source(source="RKI", date=date_last)
plt.ylim(0, 412)
plt.xlabel("")
plt.ylabel("")
plt.savefig(
fname="plots-python/hist-de-districts-Cases_Last_Week_7Day_Percent-Decr.png",
format="png",
)
plot_hist_de_districts_Cases_Last_Week_Per_100000()
plot_hist_de_districts_Cases_Last_Week_7Day_Percent_Incr()
plot_hist_de_districts_Cases_Last_Week_7Day_Percent_Decr()