-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdope.py
122 lines (104 loc) · 5.21 KB
/
dope.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
# Copyright 2020-present NAVER Corp.
# CC BY-NC-SA 4.0
# Available only for non-commercial use
import sys, os
import argparse
import os.path as osp
from PIL import Image
import cv2
import numpy as np
import torch
from torchvision.transforms import ToTensor
_thisdir = osp.realpath(osp.dirname(__file__))
from model import dope_resnet50, num_joints
import postprocess
import visu
def dope(imagename, modelname, postprocessing='ppi'):
if postprocessing=='ppi':
sys.path.append( _thisdir+'/lcrnet-v2-improved-ppi-old/')
try:
from lcr_net_ppi_improved import LCRNet_PPI_improved
except ModuleNotFoundError:
raise Exception('To use the pose proposals integration (ppi) as postprocessing, please follow the readme instruction by cloning our modified version of LCRNet_v2.0 here. Alternatively, you can use --postprocess nms without any installation, with a slight decrease of performance.')
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
## model name
# load model
ckpt_fname = osp.join(_thisdir, 'models', modelname+'.tgz')
if not os.path.isfile(ckpt_fname):
raise Exception('{:s} does not exist, please download the model first and place it in the models/ folder'.format(ckpt_fname))
print('Loading model', modelname)
ckpt = torch.load(ckpt_fname)
ckpt['half'] = False # uncomment this line in case your device cannot handle half computation
ckpt['dope_kwargs']['rpn_post_nms_top_n_test'] = 1000
model = dope_resnet50(**ckpt['dope_kwargs'])
if ckpt['half']: model = model.half()
model = model.eval()
model.load_state_dict(ckpt['state_dict'])
model = model.to(device)
# load the image
imlist = [ToTensor()(image).to(device)]
if ckpt['half']: imlist = [im.half() for im in imlist]
resolution = imlist[0].size()[-2:]
# forward pass of the dope network
print('Running DOPE')
with torch.no_grad():
results = model(imlist, None)[0]
# postprocess results (pose proposals integration, wrists/head assignment)
print('Postprocessing')
assert postprocessing in ['nms', 'ppi']
parts = ['body', 'hand', 'face']
if postprocessing == 'ppi':
res = {k: v.float().data.cpu().numpy() for k, v in results.items()}
detections = {}
for part in parts:
detections[part] = LCRNet_PPI_improved(res[part + '_scores'], res['boxes'], res[part + '_pose2d'],
res[part + '_pose3d'], resolution, **ckpt[part + '_ppi_kwargs'])
else: # nms
detections = {}
for part in parts:
dets, indices, bestcls = postprocess.DOPE_NMS(results[part + '_scores'], results['boxes'],
results[part + '_pose2d'], results[part + '_pose3d'],
min_score=0.3)
dets = {k: v.float().data.cpu().numpy() for k, v in dets.items()}
detections[part] = [
{'score': dets['score'][i], 'pose2d': dets['pose2d'][i, ...], 'pose3d': dets['pose3d'][i, ...]} for i in
range(dets['score'].size)]
if part == 'hand':
for i in range(len(detections[part])):
detections[part][i]['hand_isright'] = bestcls < ckpt['hand_ppi_kwargs']['K']
# assignment of hands and head to body
detections = postprocess.assign_hands_and_head_to_body(detections)
# display results
print('Displaying')
det_poses2d = {
part: np.stack([d['pose2d'] for d in part_detections], axis=0) if len(part_detections) > 0 else np.empty(
(0, num_joints[part], 2), dtype=np.float32) for part, part_detections in detections.items()}
scores = {part: [d['score'] for d in part_detections] for part, part_detections in detections.items()}
imout = visu.visualize_bodyhandface2d(np.asarray(image)[:, :, ::-1],
det_poses2d,
dict_scores=scores,
)
# outfile = imagename + '_{:s}.jpg'.format(modelname)
# cv2.imwrite(outfile, imout)
cv2.imshow("video", imout)
# print(outfile)
if __name__=="__main__":
#parser = argparse.ArgumentParser(description='running DOPE on an image: python dope.py --model <modelname> --image <imagename>')
#parser.add_argument('--model', required=True, type=str, help='name of the model to use (eg DOPE_v1_0_0)')
#parser.add_argument('--image', required=True, type=str , help='path to the image')
#parser.add_argument('--postprocess', default='ppi', choices=['ppi','nms'], help='postprocessing method')
#args = parser.parse_args()
cap = cv2.VideoCapture(0)
model = 'DOPErealtime_v1_0_0.pth'
while True:
success, img = cap.read()
# print('Loading image', imagename)
# image = Image.open(imagename)
image = img
# can't convert to grayscale as 3 dimensions are expected
# gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# cv2.imshow("Video",image)
key = cv2.waitKey(1)
if key == 27: # ( key 27 is the esc on keyboard )
break
dope(image, model, postprocessing='ppi')