-
Notifications
You must be signed in to change notification settings - Fork 112
/
Copy pathmod.rs
1799 lines (1650 loc) · 63 KB
/
mod.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//! Functions and structs related to process information
//!
//! The primary source of data for functions in this module is the files in a `/proc/<pid>/`
//! directory. If you have a process ID, you can use
//! [`Process::new(pid)`](struct.Process.html#method.new), otherwise you can get a
//! list of all running processes using [`all_processes()`](fn.all_processes.html).
//!
//! In case you have procfs filesystem mounted to a location other than `/proc`,
//! use [`Process::new_with_root()`](struct.Process.html#method.new_with_root).
//!
//! # Examples
//!
//! Here's a small example that prints out all processes that are running on the same tty as the calling
//! process. This is very similar to what "ps" does in its default mode. You can run this example
//! yourself with:
//!
//! > cargo run --example=ps
//!
//! ```rust
//! let me = procfs::process::Process::myself().unwrap();
//! let me_stat = me.stat().unwrap();
//! let tps = procfs::ticks_per_second();
//!
//! println!("{: >10} {: <8} {: >8} {}", "PID", "TTY", "TIME", "CMD");
//!
//! let tty = format!("pty/{}", me_stat.tty_nr().1);
//! for prc in procfs::process::all_processes().unwrap() {
//! if let Ok(stat) = prc.unwrap().stat() {
//! if stat.tty_nr == me_stat.tty_nr {
//! // total_time is in seconds
//! let total_time =
//! (stat.utime + stat.stime) as f32 / (tps as f32);
//! println!(
//! "{: >10} {: <8} {: >8} {}",
//! stat.pid, tty, total_time, stat.comm
//! );
//! }
//! }
//! }
//! ```
//!
//! Here's a simple example of how you could get the total memory used by the current process.
//! There are several ways to do this. For a longer example, see the `examples/self_memory.rs`
//! file in the git repository. You can run this example with:
//!
//! > cargo run --example=self_memory
//!
//! ```rust
//! # use procfs::process::Process;
//! let me = Process::myself().unwrap();
//! let me_stat = me.stat().unwrap();
//! let page_size = procfs::page_size();
//!
//! println!("== Data from /proc/self/stat:");
//! println!("Total virtual memory used: {} bytes", me_stat.vsize);
//! println!("Total resident set: {} pages ({} bytes)", me_stat.rss, me_stat.rss as u64 * page_size);
//! ```
use super::*;
use crate::from_iter;
use crate::net::{read_tcp_table, read_udp_table, TcpNetEntry, UdpNetEntry};
use rustix::fd::{AsFd, BorrowedFd, OwnedFd, RawFd};
use rustix::fs::{AtFlags, Mode, OFlags, RawMode};
#[cfg(feature = "serde1")]
use serde::{Deserialize, Serialize};
use std::ffi::OsStr;
use std::ffi::OsString;
use std::fs::read_link;
use std::io::{self, Read};
use std::mem;
use std::os::unix::ffi::OsStringExt;
use std::os::unix::fs::MetadataExt;
use std::path::PathBuf;
use std::str::FromStr;
mod limit;
pub use limit::*;
mod stat;
pub use stat::*;
mod mount;
pub use mount::*;
mod namespaces;
pub use namespaces::*;
mod status;
pub use status::*;
mod schedstat;
pub use schedstat::*;
mod smaps_rollup;
pub use smaps_rollup::*;
mod task;
pub use task::*;
mod pagemap;
pub use pagemap::*;
bitflags! {
/// Kernel flags for a process
///
/// See also the [Stat::flags()] method.
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct StatFlags: u32 {
/// I am an IDLE thread
const PF_IDLE = 0x0000_0002;
/// Getting shut down
const PF_EXITING = 0x0000_0004;
/// PI exit done on shut down
const PF_EXITPIDONE = 0x0000_0008;
/// I'm a virtual CPU
const PF_VCPU = 0x0000_0010;
/// I'm a workqueue worker
const PF_WQ_WORKER = 0x0000_0020;
/// Forked but didn't exec
const PF_FORKNOEXEC = 0x0000_0040;
/// Process policy on mce errors;
const PF_MCE_PROCESS = 0x0000_0080;
/// Used super-user privileges
const PF_SUPERPRIV = 0x0000_0100;
/// Dumped core
const PF_DUMPCORE = 0x0000_0200;
/// Killed by a signal
const PF_SIGNALED = 0x0000_0400;
///Allocating memory
const PF_MEMALLOC = 0x0000_0800;
/// set_user() noticed that RLIMIT_NPROC was exceeded
const PF_NPROC_EXCEEDED = 0x0000_1000;
/// If unset the fpu must be initialized before use
const PF_USED_MATH = 0x0000_2000;
/// Used async_schedule*(), used by module init
const PF_USED_ASYNC = 0x0000_4000;
/// This thread should not be frozen
const PF_NOFREEZE = 0x0000_8000;
/// Frozen for system suspend
const PF_FROZEN = 0x0001_0000;
/// I am kswapd
const PF_KSWAPD = 0x0002_0000;
/// All allocation requests will inherit GFP_NOFS
const PF_MEMALLOC_NOFS = 0x0004_0000;
/// All allocation requests will inherit GFP_NOIO
const PF_MEMALLOC_NOIO = 0x0008_0000;
/// Throttle me less: I clean memory
const PF_LESS_THROTTLE = 0x0010_0000;
/// I am a kernel thread
const PF_KTHREAD = 0x0020_0000;
/// Randomize virtual address space
const PF_RANDOMIZE = 0x0040_0000;
/// Allowed to write to swap
const PF_SWAPWRITE = 0x0080_0000;
/// Stalled due to lack of memory
const PF_MEMSTALL = 0x0100_0000;
/// I'm an Usermodehelper process
const PF_UMH = 0x0200_0000;
/// Userland is not allowed to meddle with cpus_allowed
const PF_NO_SETAFFINITY = 0x0400_0000;
/// Early kill for mce process policy
const PF_MCE_EARLY = 0x0800_0000;
/// All allocation request will have _GFP_MOVABLE cleared
const PF_MEMALLOC_NOCMA = 0x1000_0000;
/// Thread belongs to the rt mutex tester
const PF_MUTEX_TESTER = 0x2000_0000;
/// Freezer should not count it as freezable
const PF_FREEZER_SKIP = 0x4000_0000;
/// This thread called freeze_processes() and should not be frozen
const PF_SUSPEND_TASK = 0x8000_0000;
}
}
bitflags! {
/// See the [coredump_filter()](struct.Process.html#method.coredump_filter) method.
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct CoredumpFlags: u32 {
const ANONYMOUS_PRIVATE_MAPPINGS = 0x01;
const ANONYMOUS_SHARED_MAPPINGS = 0x02;
const FILEBACKED_PRIVATE_MAPPINGS = 0x04;
const FILEBACKED_SHARED_MAPPINGS = 0x08;
const ELF_HEADERS = 0x10;
const PROVATE_HUGEPAGES = 0x20;
const SHARED_HUGEPAGES = 0x40;
const PRIVATE_DAX_PAGES = 0x80;
const SHARED_DAX_PAGES = 0x100;
}
}
bitflags! {
/// The mode (read/write permissions) for an open file descriptor
///
/// This is represented as `u16` since the values of these bits are
/// [documented] to be within the `u16` range.
///
/// [documented]: https://man7.org/linux/man-pages/man2/chmod.2.html#DESCRIPTION
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct FDPermissions: u16 {
const READ = Mode::RUSR.bits() as u16;
const WRITE = Mode::WUSR.bits() as u16;
const EXECUTE = Mode::XUSR.bits() as u16;
}
}
bitflags! {
/// The permissions a process has on memory map entries.
///
/// Note that the `SHARED` and `PRIVATE` are mutually exclusive, so while you can
/// use `MMPermissions::all()` to construct an instance that has all bits set,
/// this particular value would never been seen in procfs.
#[derive(Default)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct MMPermissions: u8 {
/// No permissions
const NONE = 0;
/// Read permission
const READ = 1 << 0;
/// Write permission
const WRITE = 1 << 1;
/// Execute permission
const EXECUTE = 1 << 2;
/// Memory is shared with another process.
///
/// Mutually exclusive with PRIVATE.
const SHARED = 1 << 3;
/// Memory is private (and copy-on-write)
///
/// Mutually exclusive with SHARED.
const PRIVATE = 1 << 4;
}
}
impl MMPermissions {
fn from_ascii_char(b: u8) -> Self {
match b {
b'r' => Self::READ,
b'w' => Self::WRITE,
b'x' => Self::EXECUTE,
b's' => Self::SHARED,
b'p' => Self::PRIVATE,
_ => Self::NONE,
}
}
/// Returns this permission map as a 4-character string, similar to what you
/// might see in `/proc/\<pid\>/maps`.
///
/// Note that the SHARED and PRIVATE bits are mutually exclusive, so this
/// string is 4 characters long, not 5.
pub fn as_str(&self) -> String {
let mut s = String::with_capacity(4);
s.push(if self.contains(Self::READ) { 'r' } else { '-' });
s.push(if self.contains(Self::WRITE) { 'w' } else { '-' });
s.push(if self.contains(Self::EXECUTE) { 'x' } else { '-' });
s.push(if self.contains(Self::SHARED) {
's'
} else if self.contains(Self::PRIVATE) {
'p'
} else {
'-'
});
s
}
}
impl FromStr for MMPermissions {
type Err = std::convert::Infallible;
fn from_str(s: &str) -> Result<Self, Self::Err> {
// Only operate on ASCII (byte) values
Ok(s.bytes()
.map(Self::from_ascii_char)
.fold(Self::default(), std::ops::BitOr::bitor))
}
}
bitflags! {
/// Represents the kernel flags associated with the virtual memory area.
/// The names of these flags are just those you'll find in the man page, but in upper case.
#[derive(Default)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct VmFlags: u32 {
/// No flags
const NONE = 0;
/// Readable
const RD = 1 << 0;
/// Writable
const WR = 1 << 1;
/// Executable
const EX = 1 << 2;
/// Shared
const SH = 1 << 3;
/// May read
const MR = 1 << 4;
/// May write
const MW = 1 << 5;
/// May execute
const ME = 1 << 6;
/// May share
const MS = 1 << 7;
/// Stack segment grows down
const GD = 1 << 8;
/// Pure PFN range
const PF = 1 << 9;
/// Disable write to the mapped file
const DW = 1 << 10;
/// Pages are locked in memory
const LO = 1 << 11;
/// Memory mapped I/O area
const IO = 1 << 12;
/// Sequential read advise provided
const SR = 1 << 13;
/// Random read provided
const RR = 1 << 14;
/// Do not copy area on fork
const DC = 1 << 15;
/// Do not expand area on remapping
const DE = 1 << 16;
/// Area is accountable
const AC = 1 << 17;
/// Swap space is not reserved for the area
const NR = 1 << 18;
/// Area uses huge TLB pages
const HT = 1 << 19;
/// Perform synchronous page faults (since Linux 4.15)
const SF = 1 << 20;
/// Non-linear mapping (removed in Linux 4.0)
const NL = 1 << 21;
/// Architecture specific flag
const AR = 1 << 22;
/// Wipe on fork (since Linux 4.14)
const WF = 1 << 23;
/// Do not include area into core dump
const DD = 1 << 24;
/// Soft-dirty flag (since Linux 3.13)
const SD = 1 << 25;
/// Mixed map area
const MM = 1 << 26;
/// Huge page advise flag
const HG = 1 << 27;
/// No-huge page advise flag
const NH = 1 << 28;
/// Mergeable advise flag
const MG = 1 << 29;
/// Userfaultfd missing pages tracking (since Linux 4.3)
const UM = 1 << 30;
/// Userfaultfd wprotect pages tracking (since Linux 4.3)
const UW = 1 << 31;
}
}
impl VmFlags {
fn from_str(flag: &str) -> Self {
if flag.len() != 2 {
return VmFlags::NONE;
}
match flag {
"rd" => VmFlags::RD,
"wr" => VmFlags::WR,
"ex" => VmFlags::EX,
"sh" => VmFlags::SH,
"mr" => VmFlags::MR,
"mw" => VmFlags::MW,
"me" => VmFlags::ME,
"ms" => VmFlags::MS,
"gd" => VmFlags::GD,
"pf" => VmFlags::PF,
"dw" => VmFlags::DW,
"lo" => VmFlags::LO,
"io" => VmFlags::IO,
"sr" => VmFlags::SR,
"rr" => VmFlags::RR,
"dc" => VmFlags::DC,
"de" => VmFlags::DE,
"ac" => VmFlags::AC,
"nr" => VmFlags::NR,
"ht" => VmFlags::HT,
"sf" => VmFlags::SF,
"nl" => VmFlags::NL,
"ar" => VmFlags::AR,
"wf" => VmFlags::WF,
"dd" => VmFlags::DD,
"sd" => VmFlags::SD,
"mm" => VmFlags::MM,
"hg" => VmFlags::HG,
"nh" => VmFlags::NH,
"mg" => VmFlags::MG,
"um" => VmFlags::UM,
"uw" => VmFlags::UW,
_ => VmFlags::NONE,
}
}
}
//impl<'a, 'b, T> ProcFrom<&'b mut T> for u32 where T: Iterator<Item=&'a str> + Sized, 'a: 'b {
// fn from(i: &'b mut T) -> u32 {
// let s = i.next().unwrap();
// u32::from_str_radix(s, 10).unwrap()
// }
//}
//impl<'a> ProcFrom<&'a str> for u32 {
// fn from(s: &str) -> Self {
// u32::from_str_radix(s, 10).unwrap()
// }
//}
//fn from_iter<'a, I: Iterator<Item=&'a str>>(i: &mut I) -> u32 {
// u32::from_str_radix(i.next().unwrap(), 10).unwrap()
//}
/// Represents the state of a process.
#[derive(Debug, Clone, Copy, Eq, PartialEq)]
pub enum ProcState {
/// Running (R)
Running,
/// Sleeping in an interruptible wait (S)
Sleeping,
/// Waiting in uninterruptible disk sleep (D)
Waiting,
/// Zombie (Z)
Zombie,
/// Stopped (on a signal) (T)
///
/// Or before Linux 2.6.33, trace stopped
Stopped,
/// Tracing stop (t) (Linux 2.6.33 onward)
Tracing,
/// Dead (X)
Dead,
/// Wakekill (K) (Linux 2.6.33 to 3.13 only)
Wakekill,
/// Waking (W) (Linux 2.6.33 to 3.13 only)
Waking,
/// Parked (P) (Linux 3.9 to 3.13 only)
Parked,
/// Idle (I)
Idle,
}
impl ProcState {
pub fn from_char(c: char) -> Option<ProcState> {
match c {
'R' => Some(ProcState::Running),
'S' => Some(ProcState::Sleeping),
'D' => Some(ProcState::Waiting),
'Z' => Some(ProcState::Zombie),
'T' => Some(ProcState::Stopped),
't' => Some(ProcState::Tracing),
'X' | 'x' => Some(ProcState::Dead),
'K' => Some(ProcState::Wakekill),
'W' => Some(ProcState::Waking),
'P' => Some(ProcState::Parked),
'I' => Some(ProcState::Idle),
_ => None,
}
}
}
impl FromStr for ProcState {
type Err = ProcError;
fn from_str(s: &str) -> Result<ProcState, ProcError> {
ProcState::from_char(expect!(s.chars().next(), "empty string"))
.ok_or_else(|| build_internal_error!("failed to convert"))
}
}
//impl<'a, 'b, T> ProcFrom<&'b mut T> for ProcState where T: Iterator<Item=&'a str>, 'a: 'b {
// fn from(s: &'b mut T) -> ProcState {
// ProcState::from_str(s.next().unwrap()).unwrap()
// }
//}
/// This struct contains I/O statistics for the process, built from `/proc/<pid>/io`
///
/// To construct this structure, see [Process::io()].
///
/// # Note
///
/// In the current implementation, things are a bit racy on 32-bit systems: if process A
/// reads process B's `/proc/<pid>/io` while process B is updating one of these 64-bit
/// counters, process A could see an intermediate result.
#[derive(Debug, Copy, Clone)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct Io {
/// Characters read
///
/// The number of bytes which this task has caused to be read from storage. This is simply the
/// sum of bytes which this process passed to read(2) and similar system calls. It includes
/// things such as terminal I/O and is unaffected by whether or not actual physical disk I/O
/// was required (the read might have been satisfied from pagecache).
pub rchar: u64,
/// characters written
///
/// The number of bytes which this task has caused, or shall cause to be written to disk.
/// Similar caveats apply here as with rchar.
pub wchar: u64,
/// read syscalls
///
/// Attempt to count the number of write I/O operations—that is, system calls such as write(2)
/// and pwrite(2).
pub syscr: u64,
/// write syscalls
///
/// Attempt to count the number of write I/O operations—that is, system calls such as write(2)
/// and pwrite(2).
pub syscw: u64,
/// bytes read
///
/// Attempt to count the number of bytes which this process really did cause to be fetched from
/// the storage layer. This is accurate for block-backed filesystems.
pub read_bytes: u64,
/// bytes written
///
/// Attempt to count the number of bytes which this process caused to be sent to the storage layer.
pub write_bytes: u64,
/// Cancelled write bytes.
///
/// The big inaccuracy here is truncate. If a process writes 1MB to a file and then deletes
/// the file, it will in fact perform no write‐ out. But it will have been accounted as having
/// caused 1MB of write. In other words: this field represents the number of bytes which this
/// process caused to not happen, by truncating pagecache. A task can cause "negative" I/O too.
/// If this task truncates some dirty pagecache, some I/O which another task has been accounted
/// for (in its write_bytes) will not be happening.
pub cancelled_write_bytes: u64,
}
#[derive(Debug, PartialEq, Eq, Clone, Hash)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub enum MMapPath {
/// The file that is backing the mapping.
Path(PathBuf),
/// The process's heap.
Heap,
/// The initial process's (also known as the main thread's) stack.
Stack,
/// A thread's stack (where the `<tid>` is a thread ID). It corresponds to the
/// `/proc/<pid>/task/<tid>/` path.
///
/// (since Linux 3.4)
TStack(u32),
/// The virtual dynamically linked shared object.
Vdso,
/// Shared kernel variables
Vvar,
/// obsolete virtual syscalls, succeeded by vdso
Vsyscall,
/// rollup memory mappings, from `/proc/<pid>/smaps_rollup`
Rollup,
/// An anonymous mapping as obtained via mmap(2).
Anonymous,
/// Shared memory segment
Vsys(i32),
/// Some other pseudo-path
Other(String),
}
impl MMapPath {
fn from(path: &str) -> ProcResult<MMapPath> {
Ok(match path.trim() {
"" => MMapPath::Anonymous,
"[heap]" => MMapPath::Heap,
"[stack]" => MMapPath::Stack,
"[vdso]" => MMapPath::Vdso,
"[vvar]" => MMapPath::Vvar,
"[vsyscall]" => MMapPath::Vsyscall,
"[rollup]" => MMapPath::Rollup,
x if x.starts_with("[stack:") => {
let mut s = x[1..x.len() - 1].split(':');
let tid = from_str!(u32, expect!(s.nth(1)));
MMapPath::TStack(tid)
}
x if x.starts_with('[') && x.ends_with(']') => MMapPath::Other(x[1..x.len() - 1].to_string()),
x if x.starts_with("/SYSV") => MMapPath::Vsys(u32::from_str_radix(&x[5..13], 16)? as i32), // 32bits signed hex. /SYSVaabbccdd (deleted)
x => MMapPath::Path(PathBuf::from(x)),
})
}
}
/// Represents all entries in a `/proc/<pid>/maps` or `/proc/<pid>/smaps` file.
#[derive(Debug, PartialEq, Eq, Clone)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
#[non_exhaustive]
pub struct MemoryMaps {
pub memory_maps: Vec<MemoryMap>,
}
impl MemoryMaps {
/// Read a [MemoryMaps] from the given byte source.
///
/// The data should be formatted according to procfs /proc/pid/{maps,smaps,smaps_rollup}.
pub fn from_reader<R: io::Read>(r: R) -> ProcResult<Self> {
Self::read(r, None)
}
/// Read a [MemoryMaps] from the given path.
///
/// The file data should be formatted according to procfs
/// /proc/pid/{maps,smaps,smaps_rollup}.
pub fn from_path<P: AsRef<Path>>(path: P) -> ProcResult<Self> {
let file = FileWrapper::open(path.as_ref())?;
Self::read(file, Some(path.as_ref()))
}
/// Return an iterator over [MemoryMap].
pub fn iter(&self) -> std::slice::Iter<MemoryMap> {
self.memory_maps.iter()
}
fn read<R: io::Read>(r: R, path: Option<&Path>) -> ProcResult<Self> {
let reader = BufReader::new(r);
let mut memory_maps = Vec::new();
let mut line_iter = reader
.lines()
.map(|r| r.map_err(|_| ProcError::Incomplete(path.map(ToOwned::to_owned))));
let mut current_memory_map: Option<MemoryMap> = None;
while let Some(line) = line_iter.next().transpose()? {
// Assumes all extension fields (in `/proc/<pid>/smaps`) start with a capital letter,
// which seems to be the case.
if line.starts_with(|c: char| c.is_ascii_uppercase()) {
match current_memory_map.as_mut() {
None => return Err(ProcError::Incomplete(path.map(ToOwned::to_owned))),
Some(mm) => {
// This is probably an attribute
if line.starts_with("VmFlags") {
let flags = line.split_ascii_whitespace();
let flags = flags.skip(1); // Skips the `VmFlags:` part since we don't need it.
let flags = flags
.map(VmFlags::from_str)
// FUTURE: use `Iterator::reduce`
.fold(VmFlags::NONE, std::ops::BitOr::bitor);
mm.extension.vm_flags = flags;
} else {
let mut parts = line.split_ascii_whitespace();
let key = parts.next();
let value = parts.next();
if let (Some(k), Some(v)) = (key, value) {
// While most entries do have one, not all of them do.
let size_suffix = parts.next();
// Limited poking at /proc/<pid>/smaps and then checking if "MB", "GB", and "TB" appear in the C file that is
// supposedly responsible for creating smaps, has lead me to believe that the only size suffixes we'll ever encounter
// "kB", which is most likely kibibytes. Actually checking if the size suffix is any of the above is a way to
// future-proof the code, but I am not sure it is worth doing so.
let size_multiplier = if size_suffix.is_some() { 1024 } else { 1 };
let v = v.parse::<u64>().map_err(|_| {
ProcError::Other("Value in `Key: Value` pair was not actually a number".into())
})?;
// This ignores the case when our Key: Value pairs are really Key Value pairs. Is this a good idea?
let k = k.trim_end_matches(':');
mm.extension.map.insert(k.into(), v * size_multiplier);
}
}
}
}
} else {
if let Some(mm) = current_memory_map.take() {
memory_maps.push(mm);
}
current_memory_map = Some(MemoryMap::from_line(&line)?);
}
}
if let Some(mm) = current_memory_map.take() {
memory_maps.push(mm);
}
Ok(MemoryMaps { memory_maps })
}
}
impl<'a> IntoIterator for &'a MemoryMaps {
type IntoIter = std::slice::Iter<'a, MemoryMap>;
type Item = &'a MemoryMap;
fn into_iter(self) -> Self::IntoIter {
self.iter()
}
}
impl IntoIterator for MemoryMaps {
type IntoIter = std::vec::IntoIter<MemoryMap>;
type Item = MemoryMap;
fn into_iter(self) -> Self::IntoIter {
self.memory_maps.into_iter()
}
}
/// Represents an entry in a `/proc/<pid>/maps` or `/proc/<pid>/smaps` file.
///
/// To construct this structure for the current process, see [Process::maps()] and
/// [Process::smaps()].
#[derive(Debug, PartialEq, Eq, Clone)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct MemoryMap {
/// The address space in the process that the mapping occupies.
pub address: (u64, u64),
pub perms: MMPermissions,
/// The offset into the file/whatever
pub offset: u64,
/// The device (major, minor)
pub dev: (i32, i32),
/// The inode on that device
///
/// 0 indicates that no inode is associated with the memory region, as would be the case with
/// BSS (uninitialized data).
pub inode: u64,
pub pathname: MMapPath,
/// Memory mapping extension information, populated when parsing `/proc/<pid>/smaps`.
///
/// The members will be `Default::default()` (empty/none) when the information isn't available.
pub extension: MMapExtension,
}
impl MemoryMap {
fn from_line(line: &str) -> ProcResult<MemoryMap> {
let mut s = line.splitn(6, ' ');
let address = expect!(s.next());
let perms = expect!(s.next());
let offset = expect!(s.next());
let dev = expect!(s.next());
let inode = expect!(s.next());
let path = expect!(s.next());
Ok(MemoryMap {
address: split_into_num(address, '-', 16)?,
perms: perms.parse()?,
offset: from_str!(u64, offset, 16),
dev: split_into_num(dev, ':', 16)?,
inode: from_str!(u64, inode),
pathname: MMapPath::from(path)?,
extension: Default::default(),
})
}
}
/// Represents the information about a specific mapping as presented in /proc/\<pid\>/smaps
///
/// To construct this structure, see [Process::smaps()]
#[derive(Default, Debug, PartialEq, Eq, Clone)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct MMapExtension {
/// Key-value pairs that may represent statistics about memory usage, or other interesting things,
/// such a "ProtectionKey" (if you're on X86 and that kernel config option was specified).
///
/// Note that should a key-value pair represent a memory usage statistic, it will be in bytes.
///
/// Check your manpage for more information
pub map: HashMap<String, u64>,
/// Kernel flags associated with the virtual memory area
///
/// (since Linux 3.8)
pub vm_flags: VmFlags,
}
impl MMapExtension {
/// Return whether the extension information is empty.
pub fn is_empty(&self) -> bool {
self.map.is_empty() && self.vm_flags == VmFlags::NONE
}
}
impl Io {
pub fn from_reader<R: io::Read>(r: R) -> ProcResult<Io> {
let mut map = HashMap::new();
let reader = BufReader::new(r);
for line in reader.lines() {
let line = line?;
if line.is_empty() || !line.contains(' ') {
continue;
}
let mut s = line.split_whitespace();
let field = expect!(s.next());
let value = expect!(s.next());
let value = from_str!(u64, value);
map.insert(field[..field.len() - 1].to_string(), value);
}
let io = Io {
rchar: expect!(map.remove("rchar")),
wchar: expect!(map.remove("wchar")),
syscr: expect!(map.remove("syscr")),
syscw: expect!(map.remove("syscw")),
read_bytes: expect!(map.remove("read_bytes")),
write_bytes: expect!(map.remove("write_bytes")),
cancelled_write_bytes: expect!(map.remove("cancelled_write_bytes")),
};
assert!(!cfg!(test) || map.is_empty(), "io map is not empty: {:#?}", map);
Ok(io)
}
}
/// Describes a file descriptor opened by a process.
///
/// See also the [Process::fd()] method.
#[derive(Clone, Debug)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub enum FDTarget {
/// A file or device
Path(PathBuf),
/// A socket type, with an inode
Socket(u64),
Net(u64),
Pipe(u64),
/// A file descriptor that have no corresponding inode.
AnonInode(String),
/// A memfd file descriptor with a name.
MemFD(String),
/// Some other file descriptor type, with an inode.
Other(String, u64),
}
impl FromStr for FDTarget {
type Err = ProcError;
fn from_str(s: &str) -> Result<FDTarget, ProcError> {
// helper function that removes the first and last character
fn strip_first_last(s: &str) -> ProcResult<&str> {
if s.len() > 2 {
let mut c = s.chars();
// remove the first and last characters
let _ = c.next();
let _ = c.next_back();
Ok(c.as_str())
} else {
Err(ProcError::Incomplete(None))
}
}
if !s.starts_with('/') && s.contains(':') {
let mut s = s.split(':');
let fd_type = expect!(s.next());
match fd_type {
"socket" => {
let inode = expect!(s.next(), "socket inode");
let inode = expect!(u64::from_str_radix(strip_first_last(inode)?, 10));
Ok(FDTarget::Socket(inode))
}
"net" => {
let inode = expect!(s.next(), "net inode");
let inode = expect!(u64::from_str_radix(strip_first_last(inode)?, 10));
Ok(FDTarget::Net(inode))
}
"pipe" => {
let inode = expect!(s.next(), "pipe inode");
let inode = expect!(u64::from_str_radix(strip_first_last(inode)?, 10));
Ok(FDTarget::Pipe(inode))
}
"anon_inode" => Ok(FDTarget::AnonInode(expect!(s.next(), "anon inode").to_string())),
"" => Err(ProcError::Incomplete(None)),
x => {
let inode = expect!(s.next(), "other inode");
let inode = expect!(u64::from_str_radix(strip_first_last(inode)?, 10));
Ok(FDTarget::Other(x.to_string(), inode))
}
}
} else if let Some(s) = s.strip_prefix("/memfd:") {
Ok(FDTarget::MemFD(s.to_string()))
} else {
Ok(FDTarget::Path(PathBuf::from(s)))
}
}
}
/// See the [Process::fd()] method
#[derive(Clone)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct FDInfo {
/// The file descriptor
pub fd: i32,
/// The permission bits for this FD
///
/// **Note**: this field is only the owner read/write/execute bits. All the other bits
/// (include filetype bits) are masked out. See also the `mode()` method.
pub mode: u16,
pub target: FDTarget,
}
impl FDInfo {
/// Gets a file descriptor from a raw fd
pub fn from_raw_fd(pid: i32, raw_fd: i32) -> ProcResult<Self> {
Self::from_raw_fd_with_root("/proc", pid, raw_fd)
}
/// Gets a file descriptor from a raw fd based on a specified `/proc` path
pub fn from_raw_fd_with_root(root: impl AsRef<Path>, pid: i32, raw_fd: i32) -> ProcResult<Self> {
let path = root.as_ref().join(pid.to_string()).join("fd").join(raw_fd.to_string());
let link = wrap_io_error!(path, read_link(&path))?;
let md = wrap_io_error!(path, path.symlink_metadata())?;
let link_os: &OsStr = link.as_ref();
Ok(Self {
fd: raw_fd,
mode: ((md.mode() as RawMode) & Mode::RWXU.bits()) as u16,
target: expect!(FDTarget::from_str(expect!(link_os.to_str()))),
})
}
/// Gets a file descriptor from a directory fd and a path relative to it.
///
/// `base` is the path to the directory fd, and is used for error messages.
fn from_process_at<P: AsRef<Path>, Q: AsRef<Path>>(
base: P,
dirfd: BorrowedFd,
path: Q,
fd: i32,
) -> ProcResult<Self> {
let p = path.as_ref();
let root = base.as_ref().join(p);
let file = wrap_io_error!(
root,
rustix::fs::openat(
dirfd,
p,
OFlags::NOFOLLOW | OFlags::PATH | OFlags::CLOEXEC,
Mode::empty()
)
)?;
let link = rustix::fs::readlinkat(&file, "", Vec::new()).map_err(io::Error::from)?;
let md =
rustix::fs::statat(&file, "", AtFlags::SYMLINK_NOFOLLOW | AtFlags::EMPTY_PATH).map_err(io::Error::from)?;
let link_os = link.to_string_lossy();
let target = FDTarget::from_str(link_os.as_ref())?;
Ok(FDInfo {
fd,
mode: (md.st_mode & Mode::RWXU.bits()) as u16,
target,
})
}
/// Gets the read/write mode of this file descriptor as a bitfield
pub fn mode(&self) -> FDPermissions {
FDPermissions::from_bits_truncate(self.mode)
}
}
impl std::fmt::Debug for FDInfo {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(
f,
"FDInfo {{ fd: {:?}, mode: 0{:o}, target: {:?} }}",
&self.fd, self.mode, self.target
)
}
}
/// Represents a process in `/proc/<pid>`.
///
/// **Note** The `Process` struct holds an open file descriptor to its `/proc/<pid>` directory.
/// This makes it possible to construct a `Process` object and then later call the various methods
/// on it without a risk of inadvertently getting information from the wrong process (due to PID
/// reuse).
///
/// However the downside is that holding a lot of `Process` objects might cause the process to run
/// out of file descriptors.
///
/// For use cases that don't involve holding a lot of `Process` objects, no special handler is
/// needed. But if you do hold a lot of these objects (for example if you're writing a `ps`
/// or `top` -like program), you'll likely want to gather all of the necessary info from `Process`
/// object into a new struct and then drop the `Process` object
///
#[derive(Debug)]
pub struct Process {
fd: OwnedFd,
pub pid: i32,
pub(crate) root: PathBuf,
}
/// Methods for constructing a new `Process` object.
impl Process {
/// Returns a `Process` based on a specified PID.
///
/// This can fail if the process doesn't exist, or if you don't have permission to access it.
pub fn new(pid: i32) -> ProcResult<Process> {
let root = PathBuf::from("/proc").join(pid.to_string());
Self::new_with_root(root)
}
/// Returns a `Process` based on a specified `/proc/<pid>` path.
pub fn new_with_root(root: PathBuf) -> ProcResult<Process> {
let file = wrap_io_error!(
root,
rustix::fs::openat(
rustix::fs::cwd(),