-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
52 lines (37 loc) · 1.69 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
"""Train the model"""
import json
import numpy as np
import tensorflow as tf
from model.input_fn import input_fn
from model.model_fn import model_fn
if __name__ == '__main__':
dataset_fields = ['sentences', 'labels']
dataset_splits = ['train', 'dev', 'test']
dataset = dict()
for split in dataset_splits[:3]:
dataset[split] = dict()
for field in dataset_fields:
with open(f'./data/nsmc/{split}/{field}.txt') as f:
lines = f.readlines()
dataset[split][field] = tuple([line.strip() for line in lines])
with open('./params/dataset_params.json') as f:
data_params = json.load(f)
with open('./params/model_params.json') as f:
model_params = json.load(f)
with open('./params/training_params.json') as f:
training_params = json.load(f)
model = model_fn(data_params, model_params)
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
training_sentences = input_fn(dataset['train']['sentences'], data_params)
training_labels = np.asarray([int(label) for label in dataset['train']['labels']])
dev_sentences = input_fn(dataset['dev']['sentences'], data_params)
dev_labels = np.asarray([int(label) for label in dataset['dev']['labels']])
print(training_sentences.shape, training_sentences[1])
print(training_labels.shape, training_labels[1])
print(type(dev_sentences), dev_sentences.dtype)
batch_size = training_params['batch_size']
epochs = training_params['epochs']
model.fit(training_sentences, training_labels,
batch_size=batch_size,
epochs=epochs,
validation_data=(dev_sentences, dev_labels))