-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCode.Rmd
152 lines (112 loc) · 2.23 KB
/
Code.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
---
title: "AoL"
author: "Kelompok 3 LB06"
date: "2024-06-26"
output:
html_document: default
word_document: default
pdf_document: default
---
# Preparation
## Install Library
```{r}
#install.packages('expm')
#install.packages('car')
#install.packages('MASS')
#install.packages('bestNormalize')
#install.packages('MVN')
#install.packages('mvShapiroTest)
#install.packages('CCP')
#install.packages('CCA')
#install.packages('GGally')
```
## Import Library
```{r}
library(readxl)
library(expm)
library(car)
library(MASS)
library(bestNormalize)
library(MVN)
library(mvShapiroTest)
library(CCP)
library(CCA)
library(GGally)
```
## Import Data
```{r}
data <- read_excel("C:/Users/Rasyad/OneDrive - Bina Nusantara/Semester 6/Multivariate Statistics/AOL/Dataset_Kesehatan.xlsx")
X <- data[, 2:4]
Y <- data[, 5:7]
```
# Assumption Test
## Normal Multivariate Distribution
```{r}
dnm_x <- mvShapiro.Test(as.matrix(X))
dnm_y <- mvShapiro.Test(as.matrix(Y))
dnm_x
dnm_y
```
## Multicolinearity
```{r}
model <- lm(Indeks ~ ., data = data)
vif(model)
```
## Linearity
```{r}
ggpairs(data[,2:7])
```
## Scaling
```{r}
for (col in colnames(data)) {
transformation <- bestNormalize::yeojohnson(data[[col]])
data[[col]] <- transformation$x.t
}
X <- data[, 2:4]
Y <- data[, 5:7]
head(data)
```
# Post-Transformation
## Normal Multivariate Distribution
```{r}
dnm_x <- mvShapiro.Test(as.matrix(X))
dnm_y <- mvShapiro.Test(as.matrix(Y))
dnm_x
dnm_y
```
## Multicolinearity
```{r}
model <- lm(Indeks ~ ., data = data)
vif(model)
```
## Linearity
```{r}
ggpairs(data[,2:7])
```
# Significant Testing
## Full Test
```{r}
cancor_result <- cancor(X, Y)
cancor_result
```
## Partial Test
```{r}
rho <- cancor_result$cor
wilks_result <- p.asym(rho, nrow(data), ncol(X), ncol(Y), tstat = "Wilks")
wilks_result
```
## Loadings
```{r}
can_loadings <- comput(X,Y,cc(X, Y))
can_loadings$corr.X.xscores[,1]
can_loadings$corr.Y.yscores[,1]
can_loadings$corr.X.yscores[,1]
can_loadings$corr.Y.xscores[,1]
```
## Weights
```{r}
weight_x <- cancor_result$xcoef
weight_y <- cancor_result$ycoef
weight_x
weight_y
```