-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmorphology.m
154 lines (129 loc) · 5.44 KB
/
morphology.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
function morphology(b)
%% Function written by Eleni Christoforidou in MATLAB R2020b.
%This function performs image processing of individual cells previously
%extracted from confocal images in ImageJ. Then uses the processed images
%to calculte several morphology parameters for each cell.
%Run this function from inside the folder containing the subfolders with
%the images to be analysed. The images must begin with 'cell' in the
%filename, and must be in TIFF format. They must also be a single frame
%(i.e., not a z-stack).
%INPUT ARGUMENTS:
%b A vector of integers, each representing the maximum background
% pixel value of each image to be analysed. The values must be in the
% same order as the order that the images are analysed in. If this
% information is in an Excel file, use something like
% b=xlsread('20201105.xlsx','D2:D122'); to get the data into MATLAB.
%For EACH image analysed, the following are saved in the same directory as
%the image:
%(1) A FIG file showing the image processing performed.
%(2) A MAT file with the same filename as the image, containing the 'props'
% variable, which contains all the calculations performed for that cell.
%For ALL images analysed, the following are saved in the parent directory:
%(1) A MAT file called 'dataAnalysis', containing the combined data from
% ALL images analysed.
%% FIND ALL IMAGES TO ANALYSE
folders=dir('*/cell*.tif');
idx=[];
for i=1:length(folders)
if isfolder(folders(i).name)
idx=[idx;i]; %Ignore items that are not folders
end
end
folders=folders(idx);
wd=cd;
back=0;
for ii=1:length(folders)
cd(folders(ii).folder);
fn=folders(ii).name;
back=back+1;
thresh=b(back);
%LOAD IMAGE OF CELL AND PLOT IT
I=imread(fn); %read original image.
subplot(2,3,1)
imshow(I)
title('Original image');
set(gcf,'WindowStyle','docked');
%REMOVE BACKGROUND PIXELS
I(I<=thresh)=0; %set pixels below the background threshold to 0.
subplot(2,3,2)
imshow(I)
title('Background removed');
%BINARISE THE IMAGE AND PLOT IT
BW=imbinarize(I,'adaptive','Sensitivity',1);
subplot(2,3,3)
imshow(BW)
title('Binary image');
%FILL ANY HOLES IN THE CELL AFTER IMAGE IS BINARISED
BWfilled=imfill(BW,'holes');
subplot(2,3,4)
imshow(BWfilled)
title('Holes filled');
%EXTRACT LARGEST OBJECT IN IMAGE (I.E., THE MAIN PART OF THE CELL)
largestBlob=bwareafilt(BWfilled,1);
subplot(2,3,5)
imshow(largestBlob)
title('Largest object');
%EXTRACT ALL OBJECTS APART FROM LARGEST IN IMAGE (I.E., ALL THE PARTS OF
%THE CELL THAT ARE NOT USED FOR THE CALCULATIONS BELOW)
boundaries=bwboundaries(BWfilled); %cell array where each cell contains the row & column coordinates for an object in the image.
numberOfBoundaries=length(boundaries); %total number of objects found.
smallestBlobs=bwareafilt(BWfilled,numberOfBoundaries-1,'smallest'); %extract all objects apart from the largest one.
subplot(2,3,6)
imshow(smallestBlobs)
title('All other objects');
%SAVE FIGURE
filename=fn(1:end-4);
savefig(filename);
close
%CALUCLATE CELL PROPERTIES (using the largest object in the image only)
props=regionprops(largestBlob,'Area','Circularity','Eccentricity','Extent','MajorAxisLength','MinorAxisLength','Perimeter');
%Fields in props variable are as follows:
%Area of the cell.
%Circularity of the cell.
%Eccentricity=0 is a circle, while eccentricity=1 is a line. Shows how much of an elliptical shape the cell has.
%Extent is the ratio of pixels in the object to pixels in the total bounding box (i.e., how far the cell extents).
%MajorAxisLength is the length (in pixels) of the major axis of the cell.
%MinorAxisLength is the length (in pixels) of the minor axis of the cell.
%Perimeter of the cell.
%Calculate additional parameters and append to props variable.
[N,R]=boxcount(largestBlob);
FD=log(N)/log(R); %calculate fractal dimension.
CH=bwconvhull(BWfilled); %convex hull.
CHprops=regionprops(CH,'Area','Perimeter','MajorAxisLength','MinorAxisLength','Circularity');
props.CHA=CHprops.Area; %CHA = convex hull area.
props.CHP=CHprops.Perimeter; %CHP = convex hull perimeter.
props.Density=props.Area/CHprops.Area;
props.Roughness=props.Perimeter/CHprops.Perimeter;
props.CHspan=props.MajorAxisLength/props.MinorAxisLength; %CHspan = convex hull span ratio.
props.CHC=CHprops.Circularity; %CHC = convex hull circularity.
props.FD=FD; %FD = fractal dimension.
%SAVE CELL PROPERTIES
save(strcat(filename,'.mat'),'props');
cd(wd);
end
clearvars -except wd;
%% COMBINE DATA FROM ALL IMAGES TO ONE VARIABLE
len=length(dir('*/cell*.mat'));
data=cell(len,3);
r=1;
fols=dir;
for fol=3:length(fols)
folname=fols(fol).name;
cd(fols(fol).name);
mats=dir('cell*.mat');
for jj=1:length(mats)
fname=mats(jj).name;
load(fname,'props');
fname=fname(1:end-4);
%APPEND DATA TO MASTER VARIABLE
data{r,1}=folname; %column 1 is the sample name.
data{r,2}=fname; %column 2 is the cell ID.
data{r,3}=props; %column 3 is the 'props' variable.
r=r+1;
end
cd(wd);
end
%SAVE MASTER VARIABLE
save(strcat('dataAnalysis','.mat'),'data');
clear
end