Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update occurrences of data frame terminology #518

Closed
4 tasks done
lcawl opened this issue Sep 17, 2019 · 3 comments
Closed
4 tasks done

Update occurrences of data frame terminology #518

lcawl opened this issue Sep 17, 2019 · 3 comments
Assignees
Labels
:ml/Transform WIP Work in progress

Comments

@lcawl
Copy link
Contributor

lcawl commented Sep 17, 2019

The term "data frames" was used interchangeably with "transforms" and this must be corrected across the library (going back to 7.2):

@szabosteve
Copy link
Contributor

szabosteve commented Sep 24, 2019

List of occurrences in the Stack docs repo:

Istvan-MacBook-Pro:stack-docs[master]$ find docs -name '*.asciidoc' | xargs egrep 'data frame'
Istvan-MacBook-Pro:stack-docs[master]$ find docs -name '*.asciidoc' | xargs egrep 'dataframe'
docs/en/stack/redirects.asciidoc:* <<dataframe-limitations>>
docs/en/stack/ml/df-analytics/ecommerce-outliers.asciidoc:For more details about creating {transforms}, see <<ecommerce-dataframes>>.
docs/en/stack/ml/df-analytics/dfanalytics-limitations.asciidoc:=== Deleting a {dfanalytics-job} does not delete the {dataframe} destination index
docs/en/stack/ml/df-analytics/dfanalytics-limitations.asciidoc:the {dataframe} destination index. That index must be deleted separately.
docs/en/stack/ml/df-analytics/dfanalytics-limitations.asciidoc:[[dfa-dataframe-size-limitations]]
docs/en/stack/ml/df-analytics/dfanalytics-limitations.asciidoc:=== {dataframe-cap} memory limitation
docs/en/stack/ml/df-analytics/dfanalytics-limitations.asciidoc:{dfanalytics-cap} can analyze {dataframes} that fit into the memory limit 
docs/en/stack/ml/df-analytics/index.asciidoc:{stack-ov}/ml-dataframes.html[{dataframe}]. 
docs/en/stack/ml/df-analytics/index.asciidoc:{dataframes} which can be used as the source for {dfanalytics}.
docs/en/stack/ml/df-analytics/evaluatedf-api.asciidoc:{dataframe} row with the ground truth. For example, in case of {oldetection}, 
Istvan-MacBook-Pro:stack-docs[master]$ 

PR: #534

@szabosteve
Copy link
Contributor

szabosteve commented Sep 24, 2019

List of occurrences in the ES repo:

Istvan-MacBook-Pro:elasticsearch[master]$ find docs -name '*.asciidoc' | xargs egrep 'data frame'
docs/java-rest/high-level/transform/stop_transform.asciidoc:<1> If true wait for the data frame task to stop before responding
docs/reference/settings/ml-settings.asciidoc:`20`. In this context, jobs include both anomaly detector jobs and data frame
docs/reference/transform/overview.asciidoc:image::images/ml-dataframepivot.jpg["Example of a data frame pivot in {kib}"]

Istvan-MacBook-Pro:elasticsearch[master]$ find docs -name '*.asciidoc' | xargs egrep 'dataframe'
docs/java-rest/redirects.asciidoc:[role="exclude",id="java-rest-high-dataframe-get-data-frame-transform"]
docs/java-rest/redirects.asciidoc:[role="exclude",id="java-rest-high-dataframe-get-data-frame-transform-stats"]
docs/java-rest/redirects.asciidoc:[role="exclude",id="java-rest-high-dataframe-put-data-frame-transform"]
docs/java-rest/redirects.asciidoc:[role="exclude",id="java-rest-high-dataframe-update-data-frame-transform"]
docs/java-rest/redirects.asciidoc:[role="exclude",id="java-rest-high-dataframe-delete-data-frame-transform"]
docs/java-rest/redirects.asciidoc:[role="exclude",id="java-rest-high-dataframe-preview-data-frame-transform"]
docs/java-rest/redirects.asciidoc:[role="exclude",id="java-rest-high-dataframe-start-data-frame-transform"]
docs/java-rest/redirects.asciidoc:[role="exclude",id="java-rest-high-dataframe-stop-data-frame-transform"]
docs/java-rest/high-level/ml/evaluate-data-frame.asciidoc:Evaluates the {ml} algorithm that ran on a {dataframe}.
docs/java-rest/high-level/ml/estimate-memory-usage.asciidoc:<1> Constructing a new request containing a {dataframe-analytics-config} for which memory usage estimation should be performed
docs/reference/data-rollup-transform.asciidoc:* {stack-ov}/ml-dataframes.html[Transforming your data]
docs/reference/ml/df-analytics/apis/estimate-memory-usage-dfanalytics.asciidoc:Estimates memory usage for the given {dataframe-analytics-config}.
docs/reference/ml/df-analytics/apis/estimate-memory-usage-dfanalytics.asciidoc:This API estimates memory usage for the given {dataframe-analytics-config} before the {dfanalytics-job} is even created.
docs/reference/ml/df-analytics/apis/evaluateresources.asciidoc:the probability that each {dataframe} row belongs to a certain class. For 
docs/reference/ml/df-analytics/apis/dfanalyticsresources.asciidoc:  (Required, string) Defines which field of the {dataframe} is to be predicted. 
docs/reference/transform/checkpoints.asciidoc:. Updates the destination index (the {dataframe}) with the changed entities.
docs/reference/transform/apis/transformresource.asciidoc:{stack-ov}/ecommerce-dataframes.html[Transforming your data with {dataframes}].
docs/reference/transform/apis/transformresource.asciidoc:{stack-ov}/dataframe-limitations.html[{dataframe-cap} limitations].
docs/reference/transform/apis/put-transform.asciidoc:structure (known as a {dataframe}). The ID for each document in the
docs/reference/transform/apis/put-transform.asciidoc:{dataframe} is generated from a hash of the entity, so there is a unique row
docs/reference/transform/apis/put-transform.asciidoc:{stack-ov}/ml-dataframes.html[{transforms-cap}].
docs/reference/transform/apis/index.asciidoc:See also {stack-ov}/ml-dataframes.html[{transforms-cap}].
docs/reference/transform/dataframe-examples.asciidoc:[[dataframe-examples]]
docs/reference/transform/dataframe-examples.asciidoc:<<ecommerce-dataframes,Transforming your data with {dataframes}>>.
docs/reference/transform/dataframe-examples.asciidoc:* <<ecommerce-dataframes>>
docs/reference/transform/dataframe-examples.asciidoc:<1> This is the destination index for the {dataframe}. It is ignored by 
docs/reference/transform/dataframe-examples.asciidoc:<2> Two `group_by` fields have been selected. This means the {dataframe} will 
docs/reference/transform/dataframe-examples.asciidoc:dataset both these fields are unique. By including both in the {dataframe} it 
docs/reference/transform/dataframe-examples.asciidoc:{dataframe} in advance, populated with some sample values. For example:
docs/reference/transform/dataframe-examples.asciidoc:This {dataframe} makes it easier to answer questions such as:
docs/reference/transform/dataframe-examples.asciidoc:{dataframes} allow us to persist this data as a customer centric index. This 
docs/reference/transform/dataframe-examples.asciidoc:<2> This is the destination index for the {dataframe}. It is ignored by 
docs/reference/transform/dataframe-examples.asciidoc:This {dataframe} makes it easier to answer questions such as:
docs/reference/transform/dataframe-examples.asciidoc:For batch {dataframes} this occurs once.
docs/reference/transform/dataframe-examples.asciidoc:<2> This is the destination index for the {dataframe}. It is ignored by 
docs/reference/transform/dataframe-examples.asciidoc:This {dataframe} makes it easier to answer questions such as:
docs/reference/transform/troubleshooting.asciidoc:[[dataframe-troubleshooting]]
docs/reference/transform/limitations.asciidoc:[[dataframe-limitations]]
docs/reference/transform/limitations.asciidoc:the Elastic {dataframe} feature:
docs/reference/transform/limitations.asciidoc:=== {dataframe-cap} UI will not work during a rolling upgrade from 7.2
docs/reference/transform/limitations.asciidoc:created in 7.2, the {dataframe} UI will not work. Please wait until all nodes 
docs/reference/transform/limitations.asciidoc:have been upgraded to the newer version before using the {dataframe} UI.
docs/reference/transform/limitations.asciidoc:=== {dataframe-cap} data type limitation
docs/reference/transform/limitations.asciidoc:{dataframes-cap} do not (yet) support fields containing arrays – in the UI or 
docs/reference/transform/limitations.asciidoc:(deleted, updated, added) while the batch {dataframe} is in progress, then the 
docs/reference/transform/limitations.asciidoc:=== {cdataframe-cap} consistency does not account for deleted or updated documents
docs/reference/transform/limitations.asciidoc:will not be removed from the {dataframe} destination index.
docs/reference/transform/limitations.asciidoc:updated when viewing the {dataframe} destination index.
docs/reference/transform/limitations.asciidoc:=== Deleting a {transform} does not delete the {dataframe} destination index or {kib} index pattern
docs/reference/transform/limitations.asciidoc:neither the {dataframe} destination index nor the {kib} index pattern, should 
docs/reference/transform/limitations.asciidoc:{transform} checkpoint to complete. For {cdataframes}, the number of 
docs/reference/transform/limitations.asciidoc:=== {cdataframe-cap} scheduling limitations
docs/reference/transform/limitations.asciidoc:A {cdataframe} periodically checks for changes to source data. The functionality 
docs/reference/transform/limitations.asciidoc:=== {cdataframes-cap} may give incorrect results if documents are not yet available to search
docs/reference/transform/index.asciidoc:[[ml-dataframes]]
docs/reference/transform/index.asciidoc:* <<dataframe-examples>>
docs/reference/transform/index.asciidoc:* <<dataframe-troubleshooting>>
docs/reference/transform/index.asciidoc:* <<dataframe-limitations>>
docs/reference/transform/index.asciidoc:include::dataframe-examples.asciidoc[]
docs/reference/transform/overview.asciidoc:A _{dataframe}_ is a two-dimensional tabular data structure. In the context of
docs/reference/transform/overview.asciidoc:example, you can use {dataframes} to _pivot_ your data into a new entity-centric
docs/reference/transform/overview.asciidoc:individual document, for example a single item purchase. {dataframes-cap} enable
docs/reference/transform/overview.asciidoc:You can create {dataframes} by using {transforms}.
docs/reference/transform/overview.asciidoc:Pivoting results in a summary of your data, which is the {dataframe}.
docs/reference/transform/overview.asciidoc:ordered quantity. The result is a {dataframe} that shows the number of sold
docs/reference/transform/overview.asciidoc:image::images/ml-dataframepivot.jpg["Example of a data frame pivot in {kib}"]
docs/reference/transform/overview.asciidoc:creates a new index that is dedicated to the {dataframe}.
docs/reference/transform/usage.asciidoc:joined-up picture. This new index is sometimes referred to as a _{dataframe}_.
docs/reference/transform/usage.asciidoc:all aggregation results, you need to create the complete {dataframe}. If you
docs/reference/transform/ecommerce-example.asciidoc:[[ecommerce-dataframes]]
docs/reference/transform/ecommerce-example.asciidoc:<<ml-dataframes,{transforms-cap}>> enable you to retrieve information
docs/reference/transform/ecommerce-example.asciidoc:If you want to use more complex queries, you can create your {dataframe} from a
docs/reference/transform/ecommerce-example.asciidoc:image::images/dataframe-transforms.jpg["Managing {transforms} in {kib}"]

PR: elastic/elasticsearch#47093

@szabosteve
Copy link
Contributor

List of occurrences in the Kibana repo:

Istvan-MacBook-Pro:kibana[master]$ find docs -name '*.asciidoc' | xargs egrep 'data frame'
Istvan-MacBook-Pro:kibana[master]$ find docs -name '*.asciidoc' | xargs egrep 'dataframe'
docs/redirects.asciidoc:{stack-ov}/ecommerce-dataframes.html[Transforming the eCommerce sample data].

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
:ml/Transform WIP Work in progress
Projects
None yet
Development

No branches or pull requests

2 participants