-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathutils.py
159 lines (125 loc) · 5.81 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import torch
import math
import numpy as np
import shutil
from pathlib import Path
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).to(torch.float32).sum(0)
res.append(float(correct_k.mul_(100.0 / batch_size)))
return tuple(res)
def multitask_accuracy(outputs, labels, topk=(1,)):
"""
Args:
outputs: tuple(torch.FloatTensor), each tensor should be of shape
[batch_size, class_count], class_count can vary on a per task basis, i.e.
outputs[i].shape[1] can be different to outputs[j].shape[j].
labels: tuple(torch.LongTensor), each tensor should be of shape [batch_size]
topk: tuple(int), compute accuracy at top-k for the values of k specified
in this parameter.
Returns:
tuple(float), same length at topk with the corresponding accuracy@k in.
"""
max_k = int(np.max(topk))
task_count = len(outputs)
batch_size = labels[0].size(0)
all_correct = torch.zeros(max_k, batch_size).type(torch.ByteTensor)
if torch.cuda.is_available():
all_correct = all_correct.cuda(device=0)
for output, label in zip(outputs, labels):
_, max_k_idx = output.topk(max_k, dim=1, largest=True, sorted=True)
# Flip batch_size, class_count as .view doesn't work on non-contiguous
max_k_idx = max_k_idx.t()
correct_for_task = max_k_idx.eq(label.view(1, -1).expand_as(max_k_idx))
all_correct.add_(correct_for_task)
accuracies = []
for k in topk:
all_tasks_correct = torch.ge(all_correct[:k].float().sum(0), task_count)
accuracy_at_k = float(all_tasks_correct.float().sum(0) * 100.0 / batch_size)
accuracies.append(accuracy_at_k)
return tuple(accuracies)
def save_checkpoint(state, is_best, output_dir, filename='checkpoint.pyth'):
weights_dir = output_dir / Path('models')
if not weights_dir.exists():
weights_dir.mkdir(parents=True)
torch.save(state, weights_dir / filename)
if is_best:
shutil.copyfile(weights_dir / filename,
weights_dir / 'model_best.pyth')
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
##########################################################
## BEAM SEARCH FUNCTIONS ##
##########################################################
def beam_search_decoder(predictions, top_k = 3):
#start with an empty sequence with zero score
output_sequences = [([], 0)]
#looping through all the predictions
for token_probs in predictions:
new_sequences = []
#append new tokens to old sequences and re-score
for old_seq, old_score in output_sequences:
for char_index in range(len(token_probs)):
new_seq = old_seq + [char_index]
#considering log-likelihood for scoring
#new_score = old_score + math.log(token_probs[char_index])
new_score = old_score + token_probs[char_index]
new_sequences.append((new_seq, new_score))
#sort all new sequences in the de-creasing order of their score
output_sequences = sorted(new_sequences, key = lambda val: val[1], reverse = True)
#select top-k based on score
# *Note- best sequence is with the highest score
output_sequences = output_sequences[:top_k]
return output_sequences
def get_topk(verb_sequence, noun_sequence, beam_size):
# Conduct beam search on verb and noun individually - for Epic-kitchens
verb_output = beam_search_decoder(verb_sequence, beam_size)
noun_output = beam_search_decoder(noun_sequence, beam_size)
return verb_output, noun_output
def get_topk_action(action_sequence, beam_size):
# Conduct beam search on action - for EGTEA
action_output = beam_search_decoder(action_sequence, beam_size)
return action_output
def get_lmscore(verb_seq, noun_seq, model, num_gram, ntokens):
# Calculate the LM score of the sequence for epic
verb_score, noun_score = 0, 0
verb_input = verb_seq.repeat(1, num_gram)
noun_input = noun_seq.repeat(1, num_gram)
verb_input[range(num_gram), range(num_gram)] = ntokens[0]
noun_input[range(num_gram), range(num_gram)] = ntokens[1]
with torch.no_grad():
output = model(verb_input, noun_input)
verb_output = torch.nn.functional.log_softmax(output[..., :ntokens[0]], dim=-1)
noun_output = torch.nn.functional.log_softmax(output[..., ntokens[0]:], dim=-1)
verb_score = torch.sum(verb_output[range(num_gram), range(num_gram), verb_seq.reshape(-1)]).item()
noun_score = torch.sum(noun_output[range(num_gram), range(num_gram), noun_seq.reshape(-1)]).item()
return verb_score, noun_score
def get_lmscore_action(action_seq, model, num_gram, ntokens):
# Calculate the LM score of the sequence for egtea
action_score = 0
action_input = action_seq.repeat(1, num_gram)
action_input[range(num_gram), range(num_gram)] = ntokens
with torch.no_grad():
output = model(action_input, None)
action_output = torch.nn.functional.log_softmax(output, dim=-1)
action_score = torch.sum(action_output[range(num_gram), range(num_gram), action_seq.reshape(-1)]).item()
return action_score