-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmixup.py
84 lines (69 loc) · 2.66 KB
/
mixup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import torch
import torch.nn.functional as F
import numpy as np
def soft_cross_entropy(pred, soft_targets):
logsoftmax = torch.nn.LogSoftmax(dim=1)
return torch.mean(torch.sum(- soft_targets * logsoftmax(pred), 1))
def mixup_data(x, y, alpha=1.0):
'''Returns mixed inputs, pairs of targets, and lambda'''
if alpha > 0:
lam = np.random.beta(alpha, alpha)
else:
lam = 1
batch_size = x.size(0)
index = torch.randperm(batch_size).cuda()
mixed_x = lam * x + (1 - lam) * x[index, :]
if isinstance(y, dict):
y_a = {}
y_b = {}
y_a['verb'], y_b['verb'] = y['verb'], y['verb'][index]
y_a['noun'], y_b['noun'] = y['noun'], y['noun'][index]
else:
y_a, y_b = y, y[index]
return mixed_x, y_a, y_b, lam
def mixup_data_and_targets(x, y, alpha=1.0):
'''Returns mixed inputs, pairs of targets, and lambda'''
if alpha > 0:
lam = np.random.beta(alpha, alpha)
else:
lam = 1
batch_size = x.size(0)
index = torch.randperm(batch_size).cuda()
mixed_x = lam * x + (1 - lam) * x[index, :]
if isinstance(y, dict):
mixed_y = {}
y['verb'] = F.one_hot(y['verb'], num_classes=97).float()
y['noun'] = F.one_hot(y['noun'], num_classes=300).float()
y['verb'] = (1 - 0.05) * y['verb'] + (0.05 / y['verb'].shape[1])
y['noun'] = (1 - 0.05) * y['noun'] + (0.05 / y['noun'].shape[1])
mixed_y['verb'] = lam * y['verb'] + (1 - lam) * y['verb'][index]
mixed_y['noun'] = lam * y['noun'] + (1 - lam) * y['noun'][index]
else:
y = F.one_hot(y, num_classes=10).float()
mixed_y = lam * y + (1 - lam) * y[index]
return mixed_x, mixed_y
def mixup_criterion(criterion, pred, y_a, y_b, lam, weights=None):
loss_a = criterion(pred, y_a)
if weights is not None:
loss_a = loss_a * weights
loss_a = loss_a.sum(1)
loss_a = loss_a.mean()
loss_b = criterion(pred, y_b)
if weights is not None:
loss_b = loss_b * weights
loss_b = loss_b.sum(1)
loss_b = loss_b.mean()
return lam * loss_a + (1 - lam) * loss_b
def mixup_accuracy(output, target_a, target_b, lam, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target_a.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = lam * pred.eq(target_a.view(1, -1).expand_as(pred)) \
+ (1 - lam) * pred.eq(target_b.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).to(torch.float32).sum(0)
res.append(float(correct_k.mul_(100.0 / batch_size)))
return tuple(res)