-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path02_ceps_based_classifier.py
125 lines (88 loc) · 3.69 KB
/
02_ceps_based_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
# This code is supporting material for the book
# Building Machine Learning Systems with Python
# by Willi Richert and Luis Pedro Coelho
# published by PACKT Publishing
#
# It is made available under the MIT License
import numpy as np
from collections import defaultdict
from sklearn.metrics import precision_recall_curve, roc_curve
from sklearn.metrics import auc
from sklearn.cross_validation import ShuffleSplit
from sklearn.metrics import confusion_matrix
from utils import plot_roc, plot_confusion_matrix, GENRE_LIST
from ceps import read_ceps
from sklearn.externals import joblib
genre_list = GENRE_LIST
def train_model(clf_factory, X, Y, name, plot=False):
labels = np.unique(Y)
cv = ShuffleSplit(
n=len(X), n_iter=1, test_size=0.3, indices=True, random_state=0)
train_errors = []
test_errors = []
scores = []
pr_scores = defaultdict(list)
precisions, recalls, thresholds = defaultdict(
list), defaultdict(list), defaultdict(list)
roc_scores = defaultdict(list)
tprs = defaultdict(list)
fprs = defaultdict(list)
clfs = [] # just to later get the median
cms = []
for train, test in cv:
X_train, y_train = X[train], Y[train]
X_test, y_test = X[test], Y[test]
clf = clf_factory()
clf.fit(X_train, y_train)
clfs.append(clf)
train_score = clf.score(X_train, y_train)
test_score = clf.score(X_test, y_test)
scores.append(test_score)
train_errors.append(1 - train_score)
test_errors.append(1 - test_score)
y_pred = clf.predict(X_test)
cm = confusion_matrix(y_test, y_pred)
cms.append(cm)
print "label len:"+str(len(labels))
for label in labels:
print "label:"+str(label)
y_label_test = np.asarray(y_test == label, dtype=int)
proba = clf.predict_proba(X_test)
proba_label = proba[:, label]
precision, recall, pr_thresholds = precision_recall_curve(
y_label_test, proba_label)
pr_scores[label].append(auc(recall, precision))
precisions[label].append(precision)
recalls[label].append(recall)
thresholds[label].append(pr_thresholds)
fpr, tpr, roc_thresholds = roc_curve(y_label_test, proba_label)
roc_scores[label].append(auc(fpr, tpr))
tprs[label].append(tpr)
fprs[label].append(fpr)
if plot:
for label in labels:
print("Plotting %s" % genre_list[label])
scores_to_sort = roc_scores[label]
median = np.argsort(scores_to_sort)[len(scores_to_sort) / 2]
desc = "%s %s" % (name, genre_list[label])
plot_roc(roc_scores[label][median], desc, tprs[label][median],
fprs[label][median], label='%s vs rest' % genre_list[label])
all_pr_scores = np.asarray(pr_scores.values()).flatten()
summary = (np.mean(scores), np.std(scores),
np.mean(all_pr_scores), np.std(all_pr_scores))
print("%.3f\t%.3f\t%.3f\t%.3f\t" % summary)
#save the trained model to disk
joblib.dump(clf, 'data/model_ceps.pkl')
return np.mean(train_errors), np.mean(test_errors), np.asarray(cms)
def create_model():
from sklearn.linear_model.logistic import LogisticRegression
clf = LogisticRegression()
return clf
if __name__ == "__main__":
X, y = read_ceps(genre_list)
train_avg, test_avg, cms = train_model(
create_model, X, y, "Log Reg CEPS", plot=True)
cm_avg = np.mean(cms, axis=0)
cm_norm = cm_avg / np.sum(cm_avg, axis=0)
plot_confusion_matrix(cm_norm, genre_list, "ceps",
"Confusion matrix of a CEPS based classifier")