-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
201 lines (163 loc) · 5.6 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import torch
from torch.utils.data import Dataset, DataLoader
import numpy as np
from glob import glob
from os import path
from typing import Optional, List, Tuple, Callable
import pywt
from pytorch_lightning import LightningDataModule
import pytorch_lightning as pl
from transforms.get import get_transform
class IcasspDataModule(LightningDataModule):
def __init__(self, hparams):
super().__init__()
self.save_hyperparameters(hparams)
def setup_nosplit(self):
base_path = self.hparams.data_path
files = (
self.hparams.train_split + self.hparams.val_split + self.hparams.test_split
)
transform = get_transform(self.hparams.transform)
self.all = IcasspDataset(base_path, files, transform, None, index=True)
def setup(self, stage=None):
base_path = self.hparams.data_path
train_split = self.hparams.train_split
val_split = self.hparams.val_split
test_split = self.hparams.test_split
train_transform = get_transform(self.hparams.transform)
train_preprocessing = None # Do we really need preprocessing?
self.train = IcasspDataset(
base_path,
train_split,
train_transform,
train_preprocessing,
index=False,
)
self.val = IcasspDataset(
base_path,
val_split,
train_transform,
train_preprocessing,
index=False,
)
self.test = IcasspDataset(
base_path,
test_split,
train_transform,
train_preprocessing,
index=False,
)
def train_dataloader(self):
return DataLoader(
self.train,
batch_size=self.hparams.batch_size,
num_workers=self.hparams.nworkers,
)
def val_dataloader(self):
return DataLoader(
self.val,
batch_size=self.hparams.batch_size,
num_workers=self.hparams.nworkers,
)
def test_dataloader(self):
return DataLoader(
self.test,
batch_size=self.hparams.batch_size,
num_workers=self.hparams.nworkers,
)
def all_dataloader(self):
return DataLoader(
self.all,
batch_size=self.hparams.batch_size,
num_workers=self.hparams.nworkers,
)
def predict_dataloader(self):
return self.all_dataloader()
class IcasspDataset(Dataset):
def __init__(
self,
base_path: str,
names: List[str],
transform: Optional[Callable] = None,
preprocessing: Optional[str] = None,
fold: Optional[int] = None,
index: bool = False,
**kwargs,
):
super().__init__()
for k, v in kwargs:
print(f"WARNING: Ignoring dataset argument {k}: {v}")
self.base_path = base_path
self.names = names
self.transform = transform
self.preprocessing = preprocessing
self.fold = fold
self.index = index
if self.preprocessing is None:
fmt = "*.npy"
is_coefficient = False
elif self.preprocessing == "dwt":
fmt = "*.npy"
is_coefficient = True
self.fmt = fmt
self.is_coefficient = is_coefficient
self.hsi_in: List[str] = sorted(
[
i
for i in glob(path.join(self.base_path, "hsi_in", fmt))
if any(name in i for name in names)
]
)
self.msi_in: List[str] = sorted(
[
i
for i in glob(path.join(self.base_path, "msi_in", fmt))
if any(name in i for name in names)
]
)
self.hsi_out: List[str] = sorted(
[
i
for i in glob(path.join(self.base_path, "hsi_out", fmt))
if any(name in i for name in names)
]
)
self.total_files = len(self.hsi_in)
dir_lens_match = (
len(self.hsi_in)
== len(self.msi_in)
== len(self.hsi_out)
== self.total_files
)
assert (
dir_lens_match
), f"One of the 3 directories does not contain {self.total_files} files: msi_in - {len(self.msi_in)}, hsi_in - {len(self.hsi_in)}, hsi_out - {len(self.hsi_out)}"
print(self.init_str())
def init_str(self) -> str:
return f"Initialized {self.total_files} images Dataset with preprocessing: {self.preprocessing} in {self.base_path}"
def __len__(self) -> int:
return self.total_files
def load_image(
self, hsi_in_path: str, msi_in_path: str, hsi_out_path: str
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
hsi_in = np.load(hsi_in_path)
msi_in = np.load(msi_in_path)
hsi_out = np.load(hsi_out_path)
return msi_in, hsi_in, hsi_out
def __getitem__(self, idx: int):
msi_in, hsi_in, hsi_out = self.load_image(
self.hsi_in[idx], self.msi_in[idx], self.hsi_out[idx]
)
msi_in = torch.from_numpy(msi_in)
hsi_in = torch.from_numpy(hsi_in)
hsi_out = torch.from_numpy(hsi_out)
if self.transform is not None:
msi_in, hsi_in, hsi_out = self.transform(msi_in, hsi_in, hsi_out)
msi_in = torch.swapaxes(msi_in, 0, 2)
hsi_in = torch.swapaxes(hsi_in, 0, 2)
hsi_out = torch.swapaxes(hsi_out, 0, 2)
input = torch.cat((hsi_in, msi_in), 0)
target = hsi_out
if self.index:
return input, target, idx
return input, target