-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathtrain.py
197 lines (156 loc) · 6.49 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import logging
import os
import shutil
import numpy as np
import torch
from torch.cuda.amp import GradScaler, autocast
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from transformers import AutoTokenizer
from loss.nt_xent import NTXentLoss
# from models.resnet_clr import ResNetSimCLR
from models.model import ModelCLR
logging.getLogger("transformers.tokenization_utils_base").setLevel(logging.ERROR)
os.environ["TOKENIZERS_PARALLELISM"] = "false"
torch.manual_seed(0)
def _save_config_file(model_checkpoints_folder):
if not os.path.exists(model_checkpoints_folder):
os.makedirs(model_checkpoints_folder)
shutil.copy(
"./config.yaml", os.path.join(model_checkpoints_folder, "config.yaml")
)
class SimCLR(object):
def __init__(self, dataset, config):
self.config = config
self.device = self._get_device()
self.writer = SummaryWriter()
self.dataset = dataset
self.nt_xent_criterion = NTXentLoss(
self.device, config["batch_size"], **config["loss"]
)
self.truncation = config["truncation"]
self.tokenizer = AutoTokenizer.from_pretrained(
config["model"]["bert_base_model"]
) # , do_lower_case=config['model_bert']['do_lower_case'])
def _get_device(self):
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Running on:", device)
return device
def train(self):
# Dataloaders
train_loader, valid_loader = self.dataset.get_data_loaders()
# Model Resnet Initialize
model = ModelCLR(**self.config["model"]).to(self.device)
model = self._load_pre_trained_weights(model)
optimizer = torch.optim.Adam(
model.parameters(),
eval(self.config["learning_rate"]),
weight_decay=eval(self.config["weight_decay"]),
)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer, T_max=len(train_loader), eta_min=0, last_epoch=-1
)
scaler = GradScaler()
# Checkpoint folder
model_checkpoints_folder = os.path.join(self.writer.log_dir, "checkpoints")
# save config file
_save_config_file(model_checkpoints_folder)
n_iter = 0
valid_n_iter = 0
best_valid_loss = np.inf
print("Training...")
for epoch_counter in range(self.config["epochs"]):
# print(f'Epoch {epoch_counter}')
for xis, xls in tqdm(train_loader):
optimizer.zero_grad()
# optimizer_bert.zero_grad()
xls = self.tokenizer(
list(xls),
return_tensors="pt",
padding=True,
truncation=self.truncation,
)
xis = xis.to(self.device)
xls = xls.to(self.device)
# Only use autocast for the forward pass
with autocast():
# get the representations and the projections (Mixed Precision Training)
zis, zls = model(xis, xls) # [N,C]
# get the representations and the projections
# zls = model_bert(xls) # [N,C]
# zls = xls
# normalize projection feature vectors
loss = self.nt_xent_criterion(zis, zls)
# loss = self._step(model_res, model_bert, xis, xls, n_iter)
if n_iter % self.config["log_every_n_steps"] == 0:
self.writer.add_scalar("train_loss", loss, global_step=n_iter)
# Scales the loss to create scaled gradients
scaler.scale(loss).backward()
# Unscales the gradients
scaler.step(optimizer)
# optimizer_bert.step()
# optimizer.step()
# Update the scale for next iteration
scaler.update()
n_iter += 1
print(f"Epoch {epoch_counter} ------ Train Loss: {loss}")
# validate the model if requested
if epoch_counter % self.config["eval_every_n_epochs"] == 0:
valid_loss = self._validate(model, valid_loader, n_iter)
if valid_loss < best_valid_loss:
# save the model weights
best_valid_loss = valid_loss
torch.save(
model.state_dict(),
os.path.join(model_checkpoints_folder, "model.pth"),
)
self.writer.add_scalar(
"validation_loss", valid_loss, global_step=valid_n_iter
)
valid_n_iter += 1
print(f"Validation {epoch_counter} - Valid Loss: {valid_loss}")
# warmup for the first 10 epochs
if epoch_counter >= 10:
scheduler.step(valid_loss)
self.writer.add_scalar(
"cosine_lr_decay",
scheduler.get_last_lr()[0],
global_step=n_iter,
)
def _load_pre_trained_weights(self, model):
try:
checkpoints_folder = os.path.join(
"./runs", self.config["fine_tune_from"], "checkpoints"
)
state_dict = torch.load(os.path.join(checkpoints_folder, "model.pth"))
model.load_state_dict(state_dict)
print("Loaded pre-trained model with success.")
except FileNotFoundError:
print("Pre-trained weights not found. Training from scratch.")
return model
def _validate(self, model, valid_loader, n_iter):
# validation steps
with torch.no_grad():
model.eval()
# model_bert.eval()
valid_loss = 0.0
counter = 0
# print(f'Validation step')
for xis, xls in tqdm(valid_loader):
xls = self.tokenizer(
list(xls),
return_tensors="pt",
padding=True,
truncation=self.truncation,
)
xis = xis.to(self.device)
xls = xls.to(self.device)
# get the representations and the projections
zis, zls = model(xis, xls) # [N,C]
loss = self.nt_xent_criterion(zis, zls)
valid_loss += loss.item()
counter += 1
valid_loss /= counter
model.train()
# model_bert.train()
return valid_loss