-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmulti_env.py
211 lines (140 loc) · 6.02 KB
/
multi_env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Mar 14 09:54:26 2018
@author: anonymous
Multiprocessing of the ViZDoom enviroment, uses pipes for communication
"""
import gc
import time
from itertools import islice
from collections import deque
import multiprocessing as mp
import numpy as np
from arguments import parse_game_args
from environments import DoomEnvironment
def pipe_worker(pipe, params, is_train, idx=0):
env = DoomEnvironment(params, idx=idx, is_train=is_train, use_shaping=params.use_shaping)
while True:
action = pipe.recv()
if action is None:
break
elif action == 'reset':
pipe.send(env.reset())
else:
obs, reward, done, info = env.step(action)
pipe.send((obs, reward, done, info))
def pipe_worker2(pipe, params, is_train, idx_range=[0]):
envs_queue = deque()
for idx in idx_range:
env = DoomEnvironment(params, idx=idx, is_train=is_train, use_shaping=params.use_shaping, fixed_scenario=True)
obs = env.reset()
envs_queue.append((obs, env))
obs, cur_env = envs_queue.pop()
while True:
action = pipe.recv()
if action is None:
break
elif action == 'reset':
pipe.send(cur_env.reset())
else:
obs, reward, done, info = cur_env.step(action)
if done:
envs_queue.append((obs, cur_env))
obs, cur_env = envs_queue.popleft()
pipe.send((obs, reward, done, info))
def chunk(it, size):
it = iter(it)
return iter(lambda: tuple(islice(it, size)), ())
class MultiEnvsMPPipes(object):
"""
Run many envs on different processes to speed up simulation.
Here this is fixed to be 16 workers but this could be increased if more
compute is available
"""
def __init__(self, env_id, num_envs, num_processes, params, is_train=True):
self.parent_pipes, self.child_pipes = zip(*[mp.Pipe() for _ in range(num_envs)])
self.workers = []
if params.fixed_scenario:
if is_train:
num_scenarios = params.num_mazes_train
else:
num_scenarios = params.num_mazes_test
chunk_size = num_scenarios // num_envs
print('scenarios, chunk size')
print(num_scenarios, chunk_size)
chunks = chunk(range(num_scenarios), chunk_size)
for idx, (child_pipe, idx_range) in enumerate( zip(self.child_pipes, chunks)):
process = mp.Process(target=pipe_worker2, args=(child_pipe, params, is_train, idx_range), daemon=True) # use daemon=true so jobs die when there is an exception in main thread
self.workers.append(process)
process.start()
else:
for idx, child_pipe in enumerate( self.child_pipes):
process = mp.Process(target=pipe_worker, args=(child_pipe, params, is_train, idx), daemon=True) # use daemon=true so jobs die when there is an exception in main thread
self.workers.append(process)
process.start()
print('There are {} workers'.format(len(self.workers)))
assert env_id == 'doom', 'Multiprocessing only implemented for doom envirnment'
# tmp_env = DoomEnvironment(params)
if params.num_actions == 0:
num_actions = 5 if params.limit_actions else 8
params.num_actions = num_actions
self.num_actions = params.num_actions
self.obs_shape = (3, params.screen_height, params.screen_width)
self.prep = False # Observations already in CxHxW order
def reset(self):
new_obs = []
for pipe in self.parent_pipes:
pipe.send('reset')
for pipe in self.parent_pipes:
obs = pipe.recv()
new_obs.append(self.prep_obs(obs))
return np.stack(new_obs)
def cancel(self):
for pipe in self.parent_pipes:
pipe.send(None)
for worker in self.workers:
worker.join()
print('workers cancelled')
def prep_obs(self, obs):
if self.prep:
return obs.transpose(2,0,1)
else:
return obs
def step(self, actions):
new_obs = []
rewards = []
dones = []
infos = []
for action, pipe in zip(actions, self.parent_pipes):
pipe.send(action)
for pipe in self.parent_pipes:
obs, reward, done, info = pipe.recv()
new_obs.append(self.prep_obs(obs))
rewards.append(reward)
dones.append(done)
infos.append(infos)
return np.stack(new_obs), rewards, dones, infos
if __name__ == '__main__':
params = parse_game_args()
params.scenario_dir = '../resources/scenarios/'
# env = DoomEnvironment(params, idx=0, is_train=True, use_shaping=params.use_shaping)
# obs, reward, done, info = env.step(0)
mp_test_envs = MultiEnvsMP(params.simulator, params.num_environments, 1, params)
mp_test_envs.reset()
actions = [2]*16
# for i in range(10):
# new_obs, rewards, dones, infos = mp_test_envs.step(actions)
# print(rewards, np.stack(rewards))
envs = MultiEnvs(params.simulator, params.num_environments, 1, params)
envs.reset()
def test_mp_reset():
mp_test_envs.reset()
def test_mp_get_obs():
actions = [2]*16
new_obs, rewards, dones, infos = mp_test_envs.step(actions)
def test_sp_reset():
envs.reset()
def test_sp_get_obs():
actions = [2]*16
new_obs, rewards, dones, infos = envs.step(actions)