diff --git a/404.html b/404.html index 4007f0020..4fa005c5e 100644 --- a/404.html +++ b/404.html @@ -28,7 +28,7 @@ bayestestR - 0.15.0.4 + 0.15.1
We can see that across both models under consideration, the posterior
of the carb
effect is almost equally weighted between the
@@ -1266,8 +1265,8 @@
When comparing the results from the two factor coding schemes, we
-find:
-1. In both cases, the estimated (posterior) means are quite similar (if
-not identical).
-2. The priors and Bayes factors differ between the two schemes.
-3. Only with contr.equalprior*
, the prior distribution of
-the difference or the order of 3 (or more) means is balanced.
contr.equalprior*
,
+the prior distribution of the difference or the order of 3 (or more)
+means is balanced.
Read more about the equal prior contrasts in the
contr.equalprior
docs!
install.packages("remotes")
-remotes::install_github("easystats/easystats")
library(performance)
diff --git a/articles/example2_files/figure-html/unnamed-chunk-7-1.png b/articles/example2_files/figure-html/unnamed-chunk-7-1.png
index f664b9d07..020e6fb9f 100644
Binary files a/articles/example2_files/figure-html/unnamed-chunk-7-1.png and b/articles/example2_files/figure-html/unnamed-chunk-7-1.png differ
diff --git a/articles/example3.html b/articles/example3.html
index 2ff5ea6f5..bc3a1d5a8 100644
--- a/articles/example3.html
+++ b/articles/example3.html
@@ -24,7 +24,7 @@
bayestestR
- 0.15.0.4
+ 0.15.1
diff --git a/articles/guidelines.html b/articles/guidelines.html
index 891f7795d..b463ad67b 100644
--- a/articles/guidelines.html
+++ b/articles/guidelines.html
@@ -24,7 +24,7 @@
bayestestR
- 0.15.0.4
+ 0.15.1
diff --git a/articles/index.html b/articles/index.html
index e76f21076..fe8d604c1 100644
--- a/articles/index.html
+++ b/articles/index.html
@@ -7,7 +7,7 @@
bayestestR
- 0.15.0.4
+ 0.15.1
diff --git a/articles/indicesExistenceComparison.html b/articles/indicesExistenceComparison.html
index eee53b7f8..41ce589e6 100644
--- a/articles/indicesExistenceComparison.html
+++ b/articles/indicesExistenceComparison.html
@@ -24,7 +24,7 @@
bayestestR
- 0.15.0.4
+ 0.15.1
diff --git a/articles/mediation.html b/articles/mediation.html
index 18579f36a..43935aa47 100644
--- a/articles/mediation.html
+++ b/articles/mediation.html
@@ -24,7 +24,7 @@
bayestestR
- 0.15.0.4
+ 0.15.1
@@ -109,8 +109,6 @@
-## Error in get(paste0(generic, ".", class), envir = get_method_env()) :
-## object 'type_sum.accel' not found
This vignettes demonstrates the mediation()
-function.
Before we start, we fit some models, including a mediation-object from
the mediation-package and a structural equation modelling
@@ -119,7 +117,7 @@
Mediation Analysis in brms and rstanarm
-
+
library(bayestestR)
library(mediation)
library(brms)
@@ -135,12 +133,12 @@ Mediation Analysis in brms and
# mediation analysis, for comparison with brms
m1 <- mediate(b1, b2, sims = 1000, treat = "treat", mediator = "job_seek")
-
+
# Fit Bayesian mediation model in brms
f1 <- bf(job_seek ~ treat + econ_hard + sex + age)
f2 <- bf(depress2 ~ treat + job_seek + econ_hard + sex + age)
m2 <- brm(f1 + f2 + set_rescor(FALSE), data = jobs, refresh = 0)
-
+
# Fit Bayesian mediation model in rstanarm
m3 <- stan_mvmer(
list(
@@ -169,7 +167,7 @@ Mediation Analysis in brms and
effect). The proportion mediated is the indirect effect divided
by the total effect.
The simplest call just needs the model-object.
-
+
# for brms
mediation(m2)
#> # Causal Mediation Analysis for Stan Model
@@ -216,7 +214,7 @@ Comparison to the mediation package
Here is a comparison with the mediation package. Note that
the summary()
-output of the mediation package
shows the indirect effect first, followed by the direct effect.
-
+
summary(m1)
#>
#> Causal Mediation Analysis
@@ -269,7 +267,7 @@ Comparison to the mediation package
posterior samples, use the centrality
-argument.
Furthermore, there is a print()
-method, which allows to
print more digits.
-
+
m <- mediation(m2, centrality = "mean", ci = 0.95)
print(m, digits = 4)
#> # Causal Mediation Analysis for Stan Model
@@ -295,7 +293,7 @@ Comparison to SEM from the la
Finally, we also compare the results to a SEM model, using
lavaan. This example should demonstrate how to “translate” the
same model in different packages or modeling approached.
-
+
library(lavaan)
data(jobs)
set.seed(1234)
diff --git a/articles/overview_of_vignettes.html b/articles/overview_of_vignettes.html
index e99c5463f..78e3a0c87 100644
--- a/articles/overview_of_vignettes.html
+++ b/articles/overview_of_vignettes.html
@@ -24,7 +24,7 @@
bayestestR
- 0.15.0.4
+ 0.15.1
diff --git a/articles/probability_of_direction.html b/articles/probability_of_direction.html
index 027f093ec..bbcd4811e 100644
--- a/articles/probability_of_direction.html
+++ b/articles/probability_of_direction.html
@@ -24,7 +24,7 @@
bayestestR
- 0.15.0.4
+ 0.15.1
diff --git a/articles/probability_of_direction_files/figure-html/unnamed-chunk-3-1.png b/articles/probability_of_direction_files/figure-html/unnamed-chunk-3-1.png
index 38aae3c65..da69b4001 100644
Binary files a/articles/probability_of_direction_files/figure-html/unnamed-chunk-3-1.png and b/articles/probability_of_direction_files/figure-html/unnamed-chunk-3-1.png differ
diff --git a/articles/probability_of_direction_files/figure-html/unnamed-chunk-5-1.png b/articles/probability_of_direction_files/figure-html/unnamed-chunk-5-1.png
index 836dafa28..f6970735c 100644
Binary files a/articles/probability_of_direction_files/figure-html/unnamed-chunk-5-1.png and b/articles/probability_of_direction_files/figure-html/unnamed-chunk-5-1.png differ
diff --git a/articles/region_of_practical_equivalence.html b/articles/region_of_practical_equivalence.html
index 0aad804db..873a5bcfd 100644
--- a/articles/region_of_practical_equivalence.html
+++ b/articles/region_of_practical_equivalence.html
@@ -24,7 +24,7 @@
bayestestR
- 0.15.0.4
+ 0.15.1
diff --git a/articles/region_of_practical_equivalence_files/figure-html/unnamed-chunk-5-1.png b/articles/region_of_practical_equivalence_files/figure-html/unnamed-chunk-5-1.png
index 262dd357f..222aeaaf8 100644
Binary files a/articles/region_of_practical_equivalence_files/figure-html/unnamed-chunk-5-1.png and b/articles/region_of_practical_equivalence_files/figure-html/unnamed-chunk-5-1.png differ
diff --git a/articles/region_of_practical_equivalence_files/figure-html/unnamed-chunk-9-1.png b/articles/region_of_practical_equivalence_files/figure-html/unnamed-chunk-9-1.png
index 9321221f4..47a06ead3 100644
Binary files a/articles/region_of_practical_equivalence_files/figure-html/unnamed-chunk-9-1.png and b/articles/region_of_practical_equivalence_files/figure-html/unnamed-chunk-9-1.png differ
diff --git a/articles/web_only/indicesEstimationComparison.html b/articles/web_only/indicesEstimationComparison.html
index bfe8b0510..611af1edf 100644
--- a/articles/web_only/indicesEstimationComparison.html
+++ b/articles/web_only/indicesEstimationComparison.html
@@ -24,7 +24,7 @@
bayestestR
- 0.15.0.4
+ 0.15.1
diff --git a/authors.html b/authors.html
index 24a916193..90d1cae6b 100644
--- a/authors.html
+++ b/authors.html
@@ -7,7 +7,7 @@
bayestestR
- 0.15.0.4
+ 0.15.1
diff --git a/deps/Roboto-0.4.9/KFOMCnqEu92Fr1ME7kSn66aGLdTylUAMQXC89YmC2DPNWubEbVmQiArmlw.woff2 b/deps/Roboto-0.4.9/KFOMCnqEu92Fr1ME7kSn66aGLdTylUAMQXC89YmC2DPNWubEbVmQiArmlw.woff2
new file mode 100644
index 000000000..b0ed6d697
Binary files /dev/null and b/deps/Roboto-0.4.9/KFOMCnqEu92Fr1ME7kSn66aGLdTylUAMQXC89YmC2DPNWubEbVmQiArmlw.woff2 differ
diff --git a/deps/Roboto-0.4.9/KFOMCnqEu92Fr1ME7kSn66aGLdTylUAMQXC89YmC2DPNWubEbVmUiAo.woff2 b/deps/Roboto-0.4.9/KFOMCnqEu92Fr1ME7kSn66aGLdTylUAMQXC89YmC2DPNWubEbVmUiAo.woff2
new file mode 100644
index 000000000..5a5fad1a5
Binary files /dev/null and b/deps/Roboto-0.4.9/KFOMCnqEu92Fr1ME7kSn66aGLdTylUAMQXC89YmC2DPNWubEbVmUiAo.woff2 differ
diff --git a/deps/Roboto-0.4.9/KFOMCnqEu92Fr1ME7kSn66aGLdTylUAMQXC89YmC2DPNWubEbVmXiArmlw.woff2 b/deps/Roboto-0.4.9/KFOMCnqEu92Fr1ME7kSn66aGLdTylUAMQXC89YmC2DPNWubEbVmXiArmlw.woff2
new file mode 100644
index 000000000..de646f8d4
Binary files /dev/null and b/deps/Roboto-0.4.9/KFOMCnqEu92Fr1ME7kSn66aGLdTylUAMQXC89YmC2DPNWubEbVmXiArmlw.woff2 differ
diff --git a/deps/Roboto-0.4.9/KFOMCnqEu92Fr1ME7kSn66aGLdTylUAMQXC89YmC2DPNWubEbVmYiArmlw.woff2 b/deps/Roboto-0.4.9/KFOMCnqEu92Fr1ME7kSn66aGLdTylUAMQXC89YmC2DPNWubEbVmYiArmlw.woff2
new file mode 100644
index 000000000..6a6fb7aaf
Binary files /dev/null and b/deps/Roboto-0.4.9/KFOMCnqEu92Fr1ME7kSn66aGLdTylUAMQXC89YmC2DPNWubEbVmYiArmlw.woff2 differ
diff --git a/deps/Roboto-0.4.9/KFOMCnqEu92Fr1ME7kSn66aGLdTylUAMQXC89YmC2DPNWubEbVmZiArmlw.woff2 b/deps/Roboto-0.4.9/KFOMCnqEu92Fr1ME7kSn66aGLdTylUAMQXC89YmC2DPNWubEbVmZiArmlw.woff2
new file mode 100644
index 000000000..1a1ed7c29
Binary files /dev/null and b/deps/Roboto-0.4.9/KFOMCnqEu92Fr1ME7kSn66aGLdTylUAMQXC89YmC2DPNWubEbVmZiArmlw.woff2 differ
diff --git a/deps/Roboto-0.4.9/KFOMCnqEu92Fr1ME7kSn66aGLdTylUAMQXC89YmC2DPNWubEbVmaiArmlw.woff2 b/deps/Roboto-0.4.9/KFOMCnqEu92Fr1ME7kSn66aGLdTylUAMQXC89YmC2DPNWubEbVmaiArmlw.woff2
new file mode 100644
index 000000000..47e69cf8a
Binary files /dev/null and b/deps/Roboto-0.4.9/KFOMCnqEu92Fr1ME7kSn66aGLdTylUAMQXC89YmC2DPNWubEbVmaiArmlw.woff2 differ
diff --git a/deps/Roboto-0.4.9/KFOMCnqEu92Fr1ME7kSn66aGLdTylUAMQXC89YmC2DPNWubEbVmbiArmlw.woff2 b/deps/Roboto-0.4.9/KFOMCnqEu92Fr1ME7kSn66aGLdTylUAMQXC89YmC2DPNWubEbVmbiArmlw.woff2
new file mode 100644
index 000000000..bc95855cd
Binary files /dev/null and b/deps/Roboto-0.4.9/KFOMCnqEu92Fr1ME7kSn66aGLdTylUAMQXC89YmC2DPNWubEbVmbiArmlw.woff2 differ
diff --git a/deps/Roboto-0.4.9/KFOMCnqEu92Fr1ME7kSn66aGLdTylUAMQXC89YmC2DPNWubEbVn6iArmlw.woff2 b/deps/Roboto-0.4.9/KFOMCnqEu92Fr1ME7kSn66aGLdTylUAMQXC89YmC2DPNWubEbVn6iArmlw.woff2
new file mode 100644
index 000000000..f9c26fa24
Binary files /dev/null and b/deps/Roboto-0.4.9/KFOMCnqEu92Fr1ME7kSn66aGLdTylUAMQXC89YmC2DPNWubEbVn6iArmlw.woff2 differ
diff --git a/deps/Roboto-0.4.9/KFOMCnqEu92Fr1ME7kSn66aGLdTylUAMQXC89YmC2DPNWubEbVnoiArmlw.woff2 b/deps/Roboto-0.4.9/KFOMCnqEu92Fr1ME7kSn66aGLdTylUAMQXC89YmC2DPNWubEbVnoiArmlw.woff2
new file mode 100644
index 000000000..15e1583a0
Binary files /dev/null and b/deps/Roboto-0.4.9/KFOMCnqEu92Fr1ME7kSn66aGLdTylUAMQXC89YmC2DPNWubEbVnoiArmlw.woff2 differ
diff --git a/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu4WxKOzY.woff2 b/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu4WxKOzY.woff2
deleted file mode 100644
index a7f32b6f0..000000000
Binary files a/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu4WxKOzY.woff2 and /dev/null differ
diff --git a/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu4mxK.woff2 b/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu4mxK.woff2
deleted file mode 100644
index 2d7b21513..000000000
Binary files a/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu4mxK.woff2 and /dev/null differ
diff --git a/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu5mxKOzY.woff2 b/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu5mxKOzY.woff2
deleted file mode 100644
index a4962e9b4..000000000
Binary files a/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu5mxKOzY.woff2 and /dev/null differ
diff --git a/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu72xKOzY.woff2 b/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu72xKOzY.woff2
deleted file mode 100644
index e3d708f35..000000000
Binary files a/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu72xKOzY.woff2 and /dev/null differ
diff --git a/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu7GxKOzY.woff2 b/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu7GxKOzY.woff2
deleted file mode 100644
index 20c87e676..000000000
Binary files a/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu7GxKOzY.woff2 and /dev/null differ
diff --git a/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu7WxKOzY.woff2 b/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu7WxKOzY.woff2
deleted file mode 100644
index cfd043dba..000000000
Binary files a/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu7WxKOzY.woff2 and /dev/null differ
diff --git a/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu7mxKOzY.woff2 b/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu7mxKOzY.woff2
deleted file mode 100644
index 47ce460fa..000000000
Binary files a/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu7mxKOzY.woff2 and /dev/null differ
diff --git a/deps/Roboto-0.4.9/font.css b/deps/Roboto-0.4.9/font.css
index fd77771fb..33cb5f482 100644
--- a/deps/Roboto-0.4.9/font.css
+++ b/deps/Roboto-0.4.9/font.css
@@ -3,8 +3,9 @@
font-family: 'Roboto';
font-style: normal;
font-weight: 400;
+ font-stretch: 100%;
font-display: swap;
- src: url(KFOmCnqEu92Fr1Mu72xKOzY.woff2) format('woff2');
+ src: url(KFOMCnqEu92Fr1ME7kSn66aGLdTylUAMQXC89YmC2DPNWubEbVmZiArmlw.woff2) format('woff2');
unicode-range: U+0460-052F, U+1C80-1C8A, U+20B4, U+2DE0-2DFF, U+A640-A69F, U+FE2E-FE2F;
}
/* cyrillic */
@@ -12,8 +13,9 @@
font-family: 'Roboto';
font-style: normal;
font-weight: 400;
+ font-stretch: 100%;
font-display: swap;
- src: url(KFOmCnqEu92Fr1Mu5mxKOzY.woff2) format('woff2');
+ src: url(KFOMCnqEu92Fr1ME7kSn66aGLdTylUAMQXC89YmC2DPNWubEbVmQiArmlw.woff2) format('woff2');
unicode-range: U+0301, U+0400-045F, U+0490-0491, U+04B0-04B1, U+2116;
}
/* greek-ext */
@@ -21,8 +23,9 @@
font-family: 'Roboto';
font-style: normal;
font-weight: 400;
+ font-stretch: 100%;
font-display: swap;
- src: url(KFOmCnqEu92Fr1Mu7mxKOzY.woff2) format('woff2');
+ src: url(KFOMCnqEu92Fr1ME7kSn66aGLdTylUAMQXC89YmC2DPNWubEbVmYiArmlw.woff2) format('woff2');
unicode-range: U+1F00-1FFF;
}
/* greek */
@@ -30,17 +33,39 @@
font-family: 'Roboto';
font-style: normal;
font-weight: 400;
+ font-stretch: 100%;
font-display: swap;
- src: url(KFOmCnqEu92Fr1Mu4WxKOzY.woff2) format('woff2');
+ src: url(KFOMCnqEu92Fr1ME7kSn66aGLdTylUAMQXC89YmC2DPNWubEbVmXiArmlw.woff2) format('woff2');
unicode-range: U+0370-0377, U+037A-037F, U+0384-038A, U+038C, U+038E-03A1, U+03A3-03FF;
}
+/* math */
+@font-face {
+ font-family: 'Roboto';
+ font-style: normal;
+ font-weight: 400;
+ font-stretch: 100%;
+ font-display: swap;
+ src: url(KFOMCnqEu92Fr1ME7kSn66aGLdTylUAMQXC89YmC2DPNWubEbVnoiArmlw.woff2) format('woff2');
+ unicode-range: U+0302-0303, U+0305, U+0307-0308, U+0310, U+0312, U+0315, U+031A, U+0326-0327, U+032C, U+032F-0330, U+0332-0333, U+0338, U+033A, U+0346, U+034D, U+0391-03A1, U+03A3-03A9, U+03B1-03C9, U+03D1, U+03D5-03D6, U+03F0-03F1, U+03F4-03F5, U+2016-2017, U+2034-2038, U+203C, U+2040, U+2043, U+2047, U+2050, U+2057, U+205F, U+2070-2071, U+2074-208E, U+2090-209C, U+20D0-20DC, U+20E1, U+20E5-20EF, U+2100-2112, U+2114-2115, U+2117-2121, U+2123-214F, U+2190, U+2192, U+2194-21AE, U+21B0-21E5, U+21F1-21F2, U+21F4-2211, U+2213-2214, U+2216-22FF, U+2308-230B, U+2310, U+2319, U+231C-2321, U+2336-237A, U+237C, U+2395, U+239B-23B7, U+23D0, U+23DC-23E1, U+2474-2475, U+25AF, U+25B3, U+25B7, U+25BD, U+25C1, U+25CA, U+25CC, U+25FB, U+266D-266F, U+27C0-27FF, U+2900-2AFF, U+2B0E-2B11, U+2B30-2B4C, U+2BFE, U+3030, U+FF5B, U+FF5D, U+1D400-1D7FF, U+1EE00-1EEFF;
+}
+/* symbols */
+@font-face {
+ font-family: 'Roboto';
+ font-style: normal;
+ font-weight: 400;
+ font-stretch: 100%;
+ font-display: swap;
+ src: url(KFOMCnqEu92Fr1ME7kSn66aGLdTylUAMQXC89YmC2DPNWubEbVn6iArmlw.woff2) format('woff2');
+ unicode-range: U+0001-000C, U+000E-001F, U+007F-009F, U+20DD-20E0, U+20E2-20E4, U+2150-218F, U+2190, U+2192, U+2194-2199, U+21AF, U+21E6-21F0, U+21F3, U+2218-2219, U+2299, U+22C4-22C6, U+2300-243F, U+2440-244A, U+2460-24FF, U+25A0-27BF, U+2800-28FF, U+2921-2922, U+2981, U+29BF, U+29EB, U+2B00-2BFF, U+4DC0-4DFF, U+FFF9-FFFB, U+10140-1018E, U+10190-1019C, U+101A0, U+101D0-101FD, U+102E0-102FB, U+10E60-10E7E, U+1D2C0-1D2D3, U+1D2E0-1D37F, U+1F000-1F0FF, U+1F100-1F1AD, U+1F1E6-1F1FF, U+1F30D-1F30F, U+1F315, U+1F31C, U+1F31E, U+1F320-1F32C, U+1F336, U+1F378, U+1F37D, U+1F382, U+1F393-1F39F, U+1F3A7-1F3A8, U+1F3AC-1F3AF, U+1F3C2, U+1F3C4-1F3C6, U+1F3CA-1F3CE, U+1F3D4-1F3E0, U+1F3ED, U+1F3F1-1F3F3, U+1F3F5-1F3F7, U+1F408, U+1F415, U+1F41F, U+1F426, U+1F43F, U+1F441-1F442, U+1F444, U+1F446-1F449, U+1F44C-1F44E, U+1F453, U+1F46A, U+1F47D, U+1F4A3, U+1F4B0, U+1F4B3, U+1F4B9, U+1F4BB, U+1F4BF, U+1F4C8-1F4CB, U+1F4D6, U+1F4DA, U+1F4DF, U+1F4E3-1F4E6, U+1F4EA-1F4ED, U+1F4F7, U+1F4F9-1F4FB, U+1F4FD-1F4FE, U+1F503, U+1F507-1F50B, U+1F50D, U+1F512-1F513, U+1F53E-1F54A, U+1F54F-1F5FA, U+1F610, U+1F650-1F67F, U+1F687, U+1F68D, U+1F691, U+1F694, U+1F698, U+1F6AD, U+1F6B2, U+1F6B9-1F6BA, U+1F6BC, U+1F6C6-1F6CF, U+1F6D3-1F6D7, U+1F6E0-1F6EA, U+1F6F0-1F6F3, U+1F6F7-1F6FC, U+1F700-1F7FF, U+1F800-1F80B, U+1F810-1F847, U+1F850-1F859, U+1F860-1F887, U+1F890-1F8AD, U+1F8B0-1F8BB, U+1F8C0-1F8C1, U+1F900-1F90B, U+1F93B, U+1F946, U+1F984, U+1F996, U+1F9E9, U+1FA00-1FA6F, U+1FA70-1FA7C, U+1FA80-1FA89, U+1FA8F-1FAC6, U+1FACE-1FADC, U+1FADF-1FAE9, U+1FAF0-1FAF8, U+1FB00-1FBFF;
+}
/* vietnamese */
@font-face {
font-family: 'Roboto';
font-style: normal;
font-weight: 400;
+ font-stretch: 100%;
font-display: swap;
- src: url(KFOmCnqEu92Fr1Mu7WxKOzY.woff2) format('woff2');
+ src: url(KFOMCnqEu92Fr1ME7kSn66aGLdTylUAMQXC89YmC2DPNWubEbVmbiArmlw.woff2) format('woff2');
unicode-range: U+0102-0103, U+0110-0111, U+0128-0129, U+0168-0169, U+01A0-01A1, U+01AF-01B0, U+0300-0301, U+0303-0304, U+0308-0309, U+0323, U+0329, U+1EA0-1EF9, U+20AB;
}
/* latin-ext */
@@ -48,8 +73,9 @@
font-family: 'Roboto';
font-style: normal;
font-weight: 400;
+ font-stretch: 100%;
font-display: swap;
- src: url(KFOmCnqEu92Fr1Mu7GxKOzY.woff2) format('woff2');
+ src: url(KFOMCnqEu92Fr1ME7kSn66aGLdTylUAMQXC89YmC2DPNWubEbVmaiArmlw.woff2) format('woff2');
unicode-range: U+0100-02BA, U+02BD-02C5, U+02C7-02CC, U+02CE-02D7, U+02DD-02FF, U+0304, U+0308, U+0329, U+1D00-1DBF, U+1E00-1E9F, U+1EF2-1EFF, U+2020, U+20A0-20AB, U+20AD-20C0, U+2113, U+2C60-2C7F, U+A720-A7FF;
}
/* latin */
@@ -57,7 +83,8 @@
font-family: 'Roboto';
font-style: normal;
font-weight: 400;
+ font-stretch: 100%;
font-display: swap;
- src: url(KFOmCnqEu92Fr1Mu4mxK.woff2) format('woff2');
+ src: url(KFOMCnqEu92Fr1ME7kSn66aGLdTylUAMQXC89YmC2DPNWubEbVmUiAo.woff2) format('woff2');
unicode-range: U+0000-00FF, U+0131, U+0152-0153, U+02BB-02BC, U+02C6, U+02DA, U+02DC, U+0304, U+0308, U+0329, U+2000-206F, U+20AC, U+2122, U+2191, U+2193, U+2212, U+2215, U+FEFF, U+FFFD;
}
diff --git a/index.html b/index.html
index c27add546..b6840c4e2 100644
--- a/index.html
+++ b/index.html
@@ -30,7 +30,7 @@
bayestestR
- 0.15.0.4
+ 0.15.1
diff --git a/news/index.html b/news/index.html
index eeb9e203e..b67c2269d 100644
--- a/news/index.html
+++ b/news/index.html
@@ -7,7 +7,7 @@
bayestestR
- 0.15.0.4
+ 0.15.1
@@ -71,9 +71,13 @@
-bayestestR 0.15.0.4
+bayestestR 0.15.1
CRAN release: 2025-01-17
+
+Bug fixes
- Fix to
emmeans
/ marginaleffects
/ data.frame(<rvar>)
methods when using multiple credible levels (#688).
diff --git a/pkgdown.yml b/pkgdown.yml
index 136d69153..14201f69a 100644
--- a/pkgdown.yml
+++ b/pkgdown.yml
@@ -1,6 +1,6 @@
-pandoc: '3.6'
+pandoc: 3.6.2
pkgdown: 2.1.1.9000
-pkgdown_sha: 5c03b7444923f7c797b8b283e175f8eed63797a7
+pkgdown_sha: 6615322cb2ce15b1effcecf894123c88fa10b9c9
articles:
bayes_factors: bayes_factors.html
bayestestR: bayestestR.html
@@ -15,7 +15,7 @@ articles:
overview_of_vignettes: overview_of_vignettes.html
probability_of_direction: probability_of_direction.html
region_of_practical_equivalence: region_of_practical_equivalence.html
-last_built: 2024-12-20T09:44Z
+last_built: 2025-01-17T16:04Z
urls:
reference: https://easystats.github.io/bayestestR/reference
article: https://easystats.github.io/bayestestR/articles
diff --git a/reference/area_under_curve.html b/reference/area_under_curve.html
index 7adbf9d20..6e26baa4e 100644
--- a/reference/area_under_curve.html
+++ b/reference/area_under_curve.html
@@ -13,7 +13,7 @@
bayestestR
- 0.15.0.4
+ 0.15.1
diff --git a/reference/as.data.frame.density.html b/reference/as.data.frame.density.html
index 92f55d944..8cdcedf2b 100644
--- a/reference/as.data.frame.density.html
+++ b/reference/as.data.frame.density.html
@@ -7,7 +7,7 @@
bayestestR
- 0.15.0.4
+ 0.15.1
diff --git a/reference/as.numeric.p_direction.html b/reference/as.numeric.p_direction.html
index d97959188..8be804020 100644
--- a/reference/as.numeric.p_direction.html
+++ b/reference/as.numeric.p_direction.html
@@ -7,7 +7,7 @@
bayestestR
- 0.15.0.4
+ 0.15.1
diff --git a/reference/bayesfactor.html b/reference/bayesfactor.html
index 0fcae8eb9..e23d3b3f7 100644
--- a/reference/bayesfactor.html
+++ b/reference/bayesfactor.html
@@ -19,7 +19,7 @@
bayestestR
- 0.15.0.4
+ 0.15.1
@@ -195,8 +195,8 @@ Examples#>
#> SAMPLING FOR MODEL 'continuous' NOW (CHAIN 1).
#> Chain 1:
-#> Chain 1: Gradient evaluation took 3.9e-05 seconds
-#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.39 seconds.
+#> Chain 1: Gradient evaluation took 4.2e-05 seconds
+#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.42 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
@@ -213,15 +213,15 @@ Examples#> Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 1:
-#> Chain 1: Elapsed Time: 0.238 seconds (Warm-up)
-#> Chain 1: 0.356 seconds (Sampling)
-#> Chain 1: 0.594 seconds (Total)
+#> Chain 1: Elapsed Time: 0.202 seconds (Warm-up)
+#> Chain 1: 0.304 seconds (Sampling)
+#> Chain 1: 0.506 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'continuous' NOW (CHAIN 2).
#> Chain 2:
-#> Chain 2: Gradient evaluation took 1.6e-05 seconds
-#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.16 seconds.
+#> Chain 2: Gradient evaluation took 1.5e-05 seconds
+#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.15 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2:
#> Chain 2:
@@ -238,15 +238,15 @@ Examples#> Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 2:
-#> Chain 2: Elapsed Time: 0.21 seconds (Warm-up)
-#> Chain 2: 0.208 seconds (Sampling)
-#> Chain 2: 0.418 seconds (Total)
+#> Chain 2: Elapsed Time: 0.179 seconds (Warm-up)
+#> Chain 2: 0.18 seconds (Sampling)
+#> Chain 2: 0.359 seconds (Total)
#> Chain 2:
#>
#> SAMPLING FOR MODEL 'continuous' NOW (CHAIN 3).
#> Chain 3:
-#> Chain 3: Gradient evaluation took 1.6e-05 seconds
-#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.16 seconds.
+#> Chain 3: Gradient evaluation took 1.4e-05 seconds
+#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.14 seconds.
#> Chain 3: Adjust your expectations accordingly!
#> Chain 3:
#> Chain 3:
@@ -263,15 +263,15 @@ Examples#> Chain 3: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 3: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 3:
-#> Chain 3: Elapsed Time: 0.23 seconds (Warm-up)
-#> Chain 3: 0.143 seconds (Sampling)
-#> Chain 3: 0.373 seconds (Total)
+#> Chain 3: Elapsed Time: 0.2 seconds (Warm-up)
+#> Chain 3: 0.124 seconds (Sampling)
+#> Chain 3: 0.324 seconds (Total)
#> Chain 3:
#>
#> SAMPLING FOR MODEL 'continuous' NOW (CHAIN 4).
#> Chain 4:
-#> Chain 4: Gradient evaluation took 1.5e-05 seconds
-#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.15 seconds.
+#> Chain 4: Gradient evaluation took 1.4e-05 seconds
+#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.14 seconds.
#> Chain 4: Adjust your expectations accordingly!
#> Chain 4:
#> Chain 4:
@@ -288,9 +288,9 @@ Examples#> Chain 4: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 4: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 4:
-#> Chain 4: Elapsed Time: 0.209 seconds (Warm-up)
-#> Chain 4: 0.239 seconds (Sampling)
-#> Chain 4: 0.448 seconds (Total)
+#> Chain 4: Elapsed Time: 0.177 seconds (Warm-up)
+#> Chain 4: 0.205 seconds (Sampling)
+#> Chain 4: 0.382 seconds (Total)
#> Chain 4:
bayesfactor(model, verbose = FALSE)
#> Bayes Factor (Savage-Dickey density ratio)
diff --git a/reference/bayesfactor_inclusion.html b/reference/bayesfactor_inclusion.html
index c86876aef..5d1115381 100644
--- a/reference/bayesfactor_inclusion.html
+++ b/reference/bayesfactor_inclusion.html
@@ -11,7 +11,7 @@
bayestestR
- 0.15.0.4
+ 0.15.1
diff --git a/reference/bayesfactor_models.html b/reference/bayesfactor_models.html
index a3ad74033..fc39255cd 100644
--- a/reference/bayesfactor_models.html
+++ b/reference/bayesfactor_models.html
@@ -11,7 +11,7 @@
bayestestR
- 0.15.0.4
+ 0.15.1
@@ -288,8 +288,8 @@ Examples#>
#> SAMPLING FOR MODEL 'continuous' NOW (CHAIN 1).
#> Chain 1:
-#> Chain 1: Gradient evaluation took 1.9e-05 seconds
-#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.19 seconds.
+#> Chain 1: Gradient evaluation took 2e-05 seconds
+#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.2 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
@@ -306,9 +306,9 @@ Examples#> Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 1:
-#> Chain 1: Elapsed Time: 0.021 seconds (Warm-up)
-#> Chain 1: 0.042 seconds (Sampling)
-#> Chain 1: 0.063 seconds (Total)
+#> Chain 1: Elapsed Time: 0.017 seconds (Warm-up)
+#> Chain 1: 0.036 seconds (Sampling)
+#> Chain 1: 0.053 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'continuous' NOW (CHAIN 2).
@@ -331,15 +331,15 @@ Examples#> Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 2:
-#> Chain 2: Elapsed Time: 0.019 seconds (Warm-up)
-#> Chain 2: 0.042 seconds (Sampling)
-#> Chain 2: 0.061 seconds (Total)
+#> Chain 2: Elapsed Time: 0.016 seconds (Warm-up)
+#> Chain 2: 0.036 seconds (Sampling)
+#> Chain 2: 0.052 seconds (Total)
#> Chain 2:
#>
#> SAMPLING FOR MODEL 'continuous' NOW (CHAIN 3).
#> Chain 3:
-#> Chain 3: Gradient evaluation took 9e-06 seconds
-#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.09 seconds.
+#> Chain 3: Gradient evaluation took 8e-06 seconds
+#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.08 seconds.
#> Chain 3: Adjust your expectations accordingly!
#> Chain 3:
#> Chain 3:
@@ -356,15 +356,15 @@ Examples#> Chain 3: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 3: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 3:
-#> Chain 3: Elapsed Time: 0.021 seconds (Warm-up)
-#> Chain 3: 0.041 seconds (Sampling)
-#> Chain 3: 0.062 seconds (Total)
+#> Chain 3: Elapsed Time: 0.018 seconds (Warm-up)
+#> Chain 3: 0.035 seconds (Sampling)
+#> Chain 3: 0.053 seconds (Total)
#> Chain 3:
#>
#> SAMPLING FOR MODEL 'continuous' NOW (CHAIN 4).
#> Chain 4:
-#> Chain 4: Gradient evaluation took 9e-06 seconds
-#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.09 seconds.
+#> Chain 4: Gradient evaluation took 8e-06 seconds
+#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.08 seconds.
#> Chain 4: Adjust your expectations accordingly!
#> Chain 4:
#> Chain 4:
@@ -381,9 +381,9 @@ Examples#> Chain 4: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 4: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 4:
-#> Chain 4: Elapsed Time: 0.021 seconds (Warm-up)
-#> Chain 4: 0.042 seconds (Sampling)
-#> Chain 4: 0.063 seconds (Total)
+#> Chain 4: Elapsed Time: 0.018 seconds (Warm-up)
+#> Chain 4: 0.037 seconds (Sampling)
+#> Chain 4: 0.055 seconds (Total)
#> Chain 4:
stan_m1 <- suppressWarnings(rstanarm::stan_glm(Sepal.Length ~ Species,
data = iris,
@@ -393,8 +393,8 @@ Examples#>
#> SAMPLING FOR MODEL 'continuous' NOW (CHAIN 1).
#> Chain 1:
-#> Chain 1: Gradient evaluation took 2e-05 seconds
-#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.2 seconds.
+#> Chain 1: Gradient evaluation took 2.2e-05 seconds
+#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.22 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
@@ -411,15 +411,15 @@ Examples#> Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 1:
-#> Chain 1: Elapsed Time: 0.033 seconds (Warm-up)
-#> Chain 1: 0.054 seconds (Sampling)
-#> Chain 1: 0.087 seconds (Total)
+#> Chain 1: Elapsed Time: 0.029 seconds (Warm-up)
+#> Chain 1: 0.046 seconds (Sampling)
+#> Chain 1: 0.075 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'continuous' NOW (CHAIN 2).
#> Chain 2:
-#> Chain 2: Gradient evaluation took 9e-06 seconds
-#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.09 seconds.
+#> Chain 2: Gradient evaluation took 1e-05 seconds
+#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.1 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2:
#> Chain 2:
@@ -436,9 +436,9 @@ Examples#> Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 2:
-#> Chain 2: Elapsed Time: 0.035 seconds (Warm-up)
-#> Chain 2: 0.055 seconds (Sampling)
-#> Chain 2: 0.09 seconds (Total)
+#> Chain 2: Elapsed Time: 0.03 seconds (Warm-up)
+#> Chain 2: 0.048 seconds (Sampling)
+#> Chain 2: 0.078 seconds (Total)
#> Chain 2:
#>
#> SAMPLING FOR MODEL 'continuous' NOW (CHAIN 3).
@@ -461,9 +461,9 @@ Examples#> Chain 3: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 3: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 3:
-#> Chain 3: Elapsed Time: 0.033 seconds (Warm-up)
-#> Chain 3: 0.055 seconds (Sampling)
-#> Chain 3: 0.088 seconds (Total)
+#> Chain 3: Elapsed Time: 0.028 seconds (Warm-up)
+#> Chain 3: 0.047 seconds (Sampling)
+#> Chain 3: 0.075 seconds (Total)
#> Chain 3:
#>
#> SAMPLING FOR MODEL 'continuous' NOW (CHAIN 4).
@@ -486,9 +486,9 @@ Examples#> Chain 4: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 4: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 4:
-#> Chain 4: Elapsed Time: 0.033 seconds (Warm-up)
-#> Chain 4: 0.064 seconds (Sampling)
-#> Chain 4: 0.097 seconds (Total)
+#> Chain 4: Elapsed Time: 0.029 seconds (Warm-up)
+#> Chain 4: 0.048 seconds (Sampling)
+#> Chain 4: 0.077 seconds (Total)
#> Chain 4:
stan_m2 <- suppressWarnings(rstanarm::stan_glm(Sepal.Length ~ Species + Petal.Length,
data = iris,
@@ -498,8 +498,8 @@ Examples#>
#> SAMPLING FOR MODEL 'continuous' NOW (CHAIN 1).
#> Chain 1:
-#> Chain 1: Gradient evaluation took 1.9e-05 seconds
-#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.19 seconds.
+#> Chain 1: Gradient evaluation took 2.1e-05 seconds
+#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.21 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
@@ -516,15 +516,15 @@ Examples#> Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 1:
-#> Chain 1: Elapsed Time: 0.113 seconds (Warm-up)
-#> Chain 1: 0.13 seconds (Sampling)
-#> Chain 1: 0.243 seconds (Total)
+#> Chain 1: Elapsed Time: 0.098 seconds (Warm-up)
+#> Chain 1: 0.111 seconds (Sampling)
+#> Chain 1: 0.209 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'continuous' NOW (CHAIN 2).
#> Chain 2:
-#> Chain 2: Gradient evaluation took 1e-05 seconds
-#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.1 seconds.
+#> Chain 2: Gradient evaluation took 1.1e-05 seconds
+#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.11 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2:
#> Chain 2:
@@ -541,9 +541,9 @@ Examples#> Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 2:
-#> Chain 2: Elapsed Time: 0.102 seconds (Warm-up)
-#> Chain 2: 0.126 seconds (Sampling)
-#> Chain 2: 0.228 seconds (Total)
+#> Chain 2: Elapsed Time: 0.087 seconds (Warm-up)
+#> Chain 2: 0.108 seconds (Sampling)
+#> Chain 2: 0.195 seconds (Total)
#> Chain 2:
#>
#> SAMPLING FOR MODEL 'continuous' NOW (CHAIN 3).
@@ -566,9 +566,9 @@ Examples#> Chain 3: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 3: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 3:
-#> Chain 3: Elapsed Time: 0.103 seconds (Warm-up)
-#> Chain 3: 0.131 seconds (Sampling)
-#> Chain 3: 0.234 seconds (Total)
+#> Chain 3: Elapsed Time: 0.089 seconds (Warm-up)
+#> Chain 3: 0.118 seconds (Sampling)
+#> Chain 3: 0.207 seconds (Total)
#> Chain 3:
#>
#> SAMPLING FOR MODEL 'continuous' NOW (CHAIN 4).
@@ -591,9 +591,9 @@ Examples#> Chain 4: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 4: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 4:
-#> Chain 4: Elapsed Time: 0.096 seconds (Warm-up)
-#> Chain 4: 0.124 seconds (Sampling)
-#> Chain 4: 0.22 seconds (Total)
+#> Chain 4: Elapsed Time: 0.082 seconds (Warm-up)
+#> Chain 4: 0.099 seconds (Sampling)
+#> Chain 4: 0.181 seconds (Total)
#> Chain 4:
bayesfactor_models(stan_m1, stan_m2, denominator = stan_m0, verbose = FALSE)
#> Bayes Factors for Model Comparison
@@ -615,8 +615,8 @@ Examples#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 1).
#> Chain 1:
-#> Chain 1: Gradient evaluation took 1.9e-05 seconds
-#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.19 seconds.
+#> Chain 1: Gradient evaluation took 2.1e-05 seconds
+#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.21 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
@@ -633,15 +633,15 @@ Examples#> Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 1:
-#> Chain 1: Elapsed Time: 0.038 seconds (Warm-up)
-#> Chain 1: 0.037 seconds (Sampling)
-#> Chain 1: 0.075 seconds (Total)
+#> Chain 1: Elapsed Time: 0.029 seconds (Warm-up)
+#> Chain 1: 0.028 seconds (Sampling)
+#> Chain 1: 0.057 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 2).
#> Chain 2:
-#> Chain 2: Gradient evaluation took 9e-06 seconds
-#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.09 seconds.
+#> Chain 2: Gradient evaluation took 8e-06 seconds
+#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.08 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2:
#> Chain 2:
@@ -658,15 +658,15 @@ Examples#> Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 2:
-#> Chain 2: Elapsed Time: 0.035 seconds (Warm-up)
-#> Chain 2: 0.035 seconds (Sampling)
-#> Chain 2: 0.07 seconds (Total)
+#> Chain 2: Elapsed Time: 0.028 seconds (Warm-up)
+#> Chain 2: 0.025 seconds (Sampling)
+#> Chain 2: 0.053 seconds (Total)
#> Chain 2:
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 3).
#> Chain 3:
-#> Chain 3: Gradient evaluation took 9e-06 seconds
-#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.09 seconds.
+#> Chain 3: Gradient evaluation took 8e-06 seconds
+#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.08 seconds.
#> Chain 3: Adjust your expectations accordingly!
#> Chain 3:
#> Chain 3:
@@ -683,15 +683,15 @@ Examples#> Chain 3: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 3: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 3:
-#> Chain 3: Elapsed Time: 0.037 seconds (Warm-up)
-#> Chain 3: 0.043 seconds (Sampling)
-#> Chain 3: 0.08 seconds (Total)
+#> Chain 3: Elapsed Time: 0.029 seconds (Warm-up)
+#> Chain 3: 0.032 seconds (Sampling)
+#> Chain 3: 0.061 seconds (Total)
#> Chain 3:
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 4).
#> Chain 4:
-#> Chain 4: Gradient evaluation took 1e-05 seconds
-#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.1 seconds.
+#> Chain 4: Gradient evaluation took 8e-06 seconds
+#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.08 seconds.
#> Chain 4: Adjust your expectations accordingly!
#> Chain 4:
#> Chain 4:
@@ -708,9 +708,9 @@ Examples#> Chain 4: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 4: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 4:
-#> Chain 4: Elapsed Time: 0.035 seconds (Warm-up)
-#> Chain 4: 0.038 seconds (Sampling)
-#> Chain 4: 0.073 seconds (Total)
+#> Chain 4: Elapsed Time: 0.031 seconds (Warm-up)
+#> Chain 4: 0.033 seconds (Sampling)
+#> Chain 4: 0.064 seconds (Total)
#> Chain 4:
brm2 <- brms::brm(Sepal.Length ~ Species, data = iris, save_pars = save_pars(all = TRUE))
#> Compiling Stan program...
@@ -718,8 +718,8 @@ Examples#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 1).
#> Chain 1:
-#> Chain 1: Gradient evaluation took 8e-06 seconds
-#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.08 seconds.
+#> Chain 1: Gradient evaluation took 1e-05 seconds
+#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.1 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
@@ -736,15 +736,15 @@ Examples#> Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 1:
-#> Chain 1: Elapsed Time: 0.019 seconds (Warm-up)
-#> Chain 1: 0.016 seconds (Sampling)
-#> Chain 1: 0.035 seconds (Total)
+#> Chain 1: Elapsed Time: 0.016 seconds (Warm-up)
+#> Chain 1: 0.015 seconds (Sampling)
+#> Chain 1: 0.031 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 2).
#> Chain 2:
-#> Chain 2: Gradient evaluation took 4e-06 seconds
-#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.04 seconds.
+#> Chain 2: Gradient evaluation took 3e-06 seconds
+#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.03 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2:
#> Chain 2:
@@ -761,15 +761,15 @@ Examples#> Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 2:
-#> Chain 2: Elapsed Time: 0.02 seconds (Warm-up)
-#> Chain 2: 0.015 seconds (Sampling)
-#> Chain 2: 0.035 seconds (Total)
+#> Chain 2: Elapsed Time: 0.017 seconds (Warm-up)
+#> Chain 2: 0.016 seconds (Sampling)
+#> Chain 2: 0.033 seconds (Total)
#> Chain 2:
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 3).
#> Chain 3:
-#> Chain 3: Gradient evaluation took 6e-06 seconds
-#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.06 seconds.
+#> Chain 3: Gradient evaluation took 3e-06 seconds
+#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.03 seconds.
#> Chain 3: Adjust your expectations accordingly!
#> Chain 3:
#> Chain 3:
@@ -786,15 +786,15 @@ Examples#> Chain 3: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 3: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 3:
-#> Chain 3: Elapsed Time: 0.018 seconds (Warm-up)
-#> Chain 3: 0.017 seconds (Sampling)
-#> Chain 3: 0.035 seconds (Total)
+#> Chain 3: Elapsed Time: 0.016 seconds (Warm-up)
+#> Chain 3: 0.014 seconds (Sampling)
+#> Chain 3: 0.03 seconds (Total)
#> Chain 3:
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 4).
#> Chain 4:
-#> Chain 4: Gradient evaluation took 4e-06 seconds
-#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.04 seconds.
+#> Chain 4: Gradient evaluation took 3e-06 seconds
+#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.03 seconds.
#> Chain 4: Adjust your expectations accordingly!
#> Chain 4:
#> Chain 4:
@@ -811,9 +811,9 @@ Examples#> Chain 4: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 4: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 4:
-#> Chain 4: Elapsed Time: 0.018 seconds (Warm-up)
-#> Chain 4: 0.017 seconds (Sampling)
-#> Chain 4: 0.035 seconds (Total)
+#> Chain 4: Elapsed Time: 0.017 seconds (Warm-up)
+#> Chain 4: 0.015 seconds (Sampling)
+#> Chain 4: 0.032 seconds (Total)
#> Chain 4:
brm3 <- brms::brm(
Sepal.Length ~ Species + Petal.Length,
@@ -843,15 +843,15 @@ Examples#> Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 1:
-#> Chain 1: Elapsed Time: 0.053 seconds (Warm-up)
-#> Chain 1: 0.062 seconds (Sampling)
-#> Chain 1: 0.115 seconds (Total)
+#> Chain 1: Elapsed Time: 0.048 seconds (Warm-up)
+#> Chain 1: 0.057 seconds (Sampling)
+#> Chain 1: 0.105 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 2).
#> Chain 2:
-#> Chain 2: Gradient evaluation took 4e-06 seconds
-#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.04 seconds.
+#> Chain 2: Gradient evaluation took 5e-06 seconds
+#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.05 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2:
#> Chain 2:
@@ -869,8 +869,8 @@ Examples#> Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 2:
#> Chain 2: Elapsed Time: 0.054 seconds (Warm-up)
-#> Chain 2: 0.057 seconds (Sampling)
-#> Chain 2: 0.111 seconds (Total)
+#> Chain 2: 0.052 seconds (Sampling)
+#> Chain 2: 0.106 seconds (Total)
#> Chain 2:
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 3).
@@ -893,9 +893,9 @@ Examples#> Chain 3: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 3: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 3:
-#> Chain 3: Elapsed Time: 0.05 seconds (Warm-up)
-#> Chain 3: 0.057 seconds (Sampling)
-#> Chain 3: 0.107 seconds (Total)
+#> Chain 3: Elapsed Time: 0.046 seconds (Warm-up)
+#> Chain 3: 0.052 seconds (Sampling)
+#> Chain 3: 0.098 seconds (Total)
#> Chain 3:
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 4).
@@ -918,16 +918,16 @@ Examples#> Chain 4: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 4: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 4:
-#> Chain 4: Elapsed Time: 0.058 seconds (Warm-up)
-#> Chain 4: 0.056 seconds (Sampling)
-#> Chain 4: 0.114 seconds (Total)
+#> Chain 4: Elapsed Time: 0.051 seconds (Warm-up)
+#> Chain 4: 0.052 seconds (Sampling)
+#> Chain 4: 0.103 seconds (Total)
#> Chain 4:
bayesfactor_models(brm1, brm2, brm3, denominator = 1, verbose = FALSE)
#> Bayes Factors for Model Comparison
#>
#> Model BF
-#> [2] Species 5.89e+29
+#> [2] Species 5.86e+29
#> [3] Species + Petal.Length 7.50e+55
#>
#> * Against Denominator: [1] (Intercept only)
diff --git a/reference/bayesfactor_parameters.html b/reference/bayesfactor_parameters.html
index 9b80176c2..6982019ac 100644
--- a/reference/bayesfactor_parameters.html
+++ b/reference/bayesfactor_parameters.html
@@ -59,7 +59,7 @@
bayestestR
- 0.15.0.4
+ 0.15.1
@@ -514,8 +514,8 @@ Examples#>
#> Parameter | BF
#> -------------------
-#> (Intercept) | 6.81
-#> group1 | 11.03
+#> (Intercept) | 6.58
+#> group1 | 11.41
#>
#> * Evidence Against The Null: 0
#>
diff --git a/reference/bayesfactor_restricted.html b/reference/bayesfactor_restricted.html
index fc7ac8b68..abb92111d 100644
--- a/reference/bayesfactor_restricted.html
+++ b/reference/bayesfactor_restricted.html
@@ -19,7 +19,7 @@
bayestestR
- 0.15.0.4
+ 0.15.1
@@ -375,15 +375,15 @@ Examples#> Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 1:
-#> Chain 1: Elapsed Time: 0.035 seconds (Warm-up)
-#> Chain 1: 0.042 seconds (Sampling)
-#> Chain 1: 0.077 seconds (Total)
+#> Chain 1: Elapsed Time: 0.03 seconds (Warm-up)
+#> Chain 1: 0.039 seconds (Sampling)
+#> Chain 1: 0.069 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'continuous' NOW (CHAIN 2).
#> Chain 2:
-#> Chain 2: Gradient evaluation took 9e-06 seconds
-#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.09 seconds.
+#> Chain 2: Gradient evaluation took 1.2e-05 seconds
+#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.12 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2:
#> Chain 2:
@@ -400,15 +400,15 @@ Examples#> Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 2:
-#> Chain 2: Elapsed Time: 0.036 seconds (Warm-up)
-#> Chain 2: 0.044 seconds (Sampling)
-#> Chain 2: 0.08 seconds (Total)
+#> Chain 2: Elapsed Time: 0.031 seconds (Warm-up)
+#> Chain 2: 0.04 seconds (Sampling)
+#> Chain 2: 0.071 seconds (Total)
#> Chain 2:
#>
#> SAMPLING FOR MODEL 'continuous' NOW (CHAIN 3).
#> Chain 3:
-#> Chain 3: Gradient evaluation took 9e-06 seconds
-#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.09 seconds.
+#> Chain 3: Gradient evaluation took 1.1e-05 seconds
+#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.11 seconds.
#> Chain 3: Adjust your expectations accordingly!
#> Chain 3:
#> Chain 3:
@@ -425,15 +425,15 @@ Examples#> Chain 3: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 3: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 3:
-#> Chain 3: Elapsed Time: 0.035 seconds (Warm-up)
-#> Chain 3: 0.043 seconds (Sampling)
-#> Chain 3: 0.078 seconds (Total)
+#> Chain 3: Elapsed Time: 0.03 seconds (Warm-up)
+#> Chain 3: 0.039 seconds (Sampling)
+#> Chain 3: 0.069 seconds (Total)
#> Chain 3:
#>
#> SAMPLING FOR MODEL 'continuous' NOW (CHAIN 4).
#> Chain 4:
-#> Chain 4: Gradient evaluation took 1e-05 seconds
-#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.1 seconds.
+#> Chain 4: Gradient evaluation took 1.1e-05 seconds
+#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.11 seconds.
#> Chain 4: Adjust your expectations accordingly!
#> Chain 4:
#> Chain 4:
@@ -450,9 +450,9 @@ Examples#> Chain 4: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 4: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 4:
-#> Chain 4: Elapsed Time: 0.034 seconds (Warm-up)
-#> Chain 4: 0.051 seconds (Sampling)
-#> Chain 4: 0.085 seconds (Total)
+#> Chain 4: Elapsed Time: 0.029 seconds (Warm-up)
+#> Chain 4: 0.039 seconds (Sampling)
+#> Chain 4: 0.068 seconds (Total)
#> Chain 4:
em_condition <- emmeans::emmeans(fit_model, ~condition, data = disgust)
diff --git a/reference/bayestestR-package.html b/reference/bayestestR-package.html
index ed0699441..4238e03a8 100644
--- a/reference/bayestestR-package.html
+++ b/reference/bayestestR-package.html
@@ -29,7 +29,7 @@
bayestestR
- 0.15.0.4
+ 0.15.1
diff --git a/reference/bci.html b/reference/bci.html
index eca7b7925..9a05579ac 100644
--- a/reference/bci.html
+++ b/reference/bci.html
@@ -9,7 +9,7 @@
bayestestR
- 0.15.0.4
+ 0.15.1
diff --git a/reference/bic_to_bf.html b/reference/bic_to_bf.html
index 03ac1b393..2c88e5886 100644
--- a/reference/bic_to_bf.html
+++ b/reference/bic_to_bf.html
@@ -13,7 +13,7 @@
bayestestR
- 0.15.0.4
+ 0.15.1
diff --git a/reference/check_prior.html b/reference/check_prior.html
index 866d0878f..4ed22eaba 100644
--- a/reference/check_prior.html
+++ b/reference/check_prior.html
@@ -11,7 +11,7 @@
bayestestR
- 0.15.0.4
+ 0.15.1
diff --git a/reference/ci.html b/reference/ci.html
index cb201126c..0895b7960 100644
--- a/reference/ci.html
+++ b/reference/ci.html
@@ -11,7 +11,7 @@
bayestestR
- 0.15.0.4
+ 0.15.1
diff --git a/reference/contr.equalprior.html b/reference/contr.equalprior.html
index a5635a995..39e9a0c8e 100644
--- a/reference/contr.equalprior.html
+++ b/reference/contr.equalprior.html
@@ -17,7 +17,7 @@
bayestestR
- 0.15.0.4
+ 0.15.1
diff --git a/reference/convert_bayesian_as_frequentist.html b/reference/convert_bayesian_as_frequentist.html
index f1fc5a740..558a19849 100644
--- a/reference/convert_bayesian_as_frequentist.html
+++ b/reference/convert_bayesian_as_frequentist.html
@@ -7,7 +7,7 @@
bayestestR
- 0.15.0.4
+ 0.15.1
diff --git a/reference/density_at.html b/reference/density_at.html
index 9b1e462e9..9c724be20 100644
--- a/reference/density_at.html
+++ b/reference/density_at.html
@@ -9,7 +9,7 @@
bayestestR
- 0.15.0.4
+ 0.15.1
diff --git a/reference/describe_posterior.html b/reference/describe_posterior.html
index b5f1a66d9..3b1fd5958 100644
--- a/reference/describe_posterior.html
+++ b/reference/describe_posterior.html
@@ -7,7 +7,7 @@
bayestestR
- 0.15.0.4
+ 0.15.1
@@ -203,11 +203,11 @@ Argumentstest
The indices of effect existence to compute. Character (vector) or
list with one or more of these options: "p_direction"
(or "pd"
),
-"rope"
, "p_map"
, "equivalence_test"
(or "equitest"
),
-"bayesfactor"
(or "bf"
) or "all"
to compute all tests. For each
-"test", the corresponding bayestestR function is called (e.g.
-rope()
or p_direction()
) and its results included in the summary
-output.
+"rope"
, "p_map"
, "p_significance"
(or "ps"
), "p_rope"
,
+"equivalence_test"
(or "equitest"
), "bayesfactor"
(or "bf"
) or
+"all"
to compute all tests. For each "test", the corresponding
+bayestestR function is called (e.g. rope()
or p_direction()
)
+and its results included in the summary output.
rope_range
diff --git a/reference/describe_prior.html b/reference/describe_prior.html
index 3f4822f21..0ed63ccfa 100644
--- a/reference/describe_prior.html
+++ b/reference/describe_prior.html
@@ -7,7 +7,7 @@
bayestestR
- 0.15.0.4
+ 0.15.1
@@ -136,8 +136,8 @@ Examples#>
#> SAMPLING FOR MODEL 'continuous' NOW (CHAIN 1).
#> Chain 1:
-#> Chain 1: Gradient evaluation took 2e-05 seconds
-#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.2 seconds.
+#> Chain 1: Gradient evaluation took 2.1e-05 seconds
+#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.21 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
@@ -154,9 +154,9 @@ Examples#> Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 1:
-#> Chain 1: Elapsed Time: 0.057 seconds (Warm-up)
-#> Chain 1: 0.052 seconds (Sampling)
-#> Chain 1: 0.109 seconds (Total)
+#> Chain 1: Elapsed Time: 0.049 seconds (Warm-up)
+#> Chain 1: 0.046 seconds (Sampling)
+#> Chain 1: 0.095 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'continuous' NOW (CHAIN 2).
@@ -179,15 +179,15 @@ Examples#> Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 2:
-#> Chain 2: Elapsed Time: 0.056 seconds (Warm-up)
-#> Chain 2: 0.051 seconds (Sampling)
-#> Chain 2: 0.107 seconds (Total)
+#> Chain 2: Elapsed Time: 0.048 seconds (Warm-up)
+#> Chain 2: 0.044 seconds (Sampling)
+#> Chain 2: 0.092 seconds (Total)
#> Chain 2:
#>
#> SAMPLING FOR MODEL 'continuous' NOW (CHAIN 3).
#> Chain 3:
-#> Chain 3: Gradient evaluation took 1e-05 seconds
-#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.1 seconds.
+#> Chain 3: Gradient evaluation took 1.1e-05 seconds
+#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.11 seconds.
#> Chain 3: Adjust your expectations accordingly!
#> Chain 3:
#> Chain 3:
@@ -204,15 +204,15 @@ Examples#> Chain 3: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 3: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 3:
-#> Chain 3: Elapsed Time: 0.053 seconds (Warm-up)
-#> Chain 3: 0.05 seconds (Sampling)
-#> Chain 3: 0.103 seconds (Total)
+#> Chain 3: Elapsed Time: 0.045 seconds (Warm-up)
+#> Chain 3: 0.044 seconds (Sampling)
+#> Chain 3: 0.089 seconds (Total)
#> Chain 3:
#>
#> SAMPLING FOR MODEL 'continuous' NOW (CHAIN 4).
#> Chain 4:
-#> Chain 4: Gradient evaluation took 9e-06 seconds
-#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.09 seconds.
+#> Chain 4: Gradient evaluation took 1.1e-05 seconds
+#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.11 seconds.
#> Chain 4: Adjust your expectations accordingly!
#> Chain 4:
#> Chain 4:
@@ -229,9 +229,9 @@ Examples#> Chain 4: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 4: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 4:
-#> Chain 4: Elapsed Time: 0.068 seconds (Warm-up)
-#> Chain 4: 0.046 seconds (Sampling)
-#> Chain 4: 0.114 seconds (Total)
+#> Chain 4: Elapsed Time: 0.059 seconds (Warm-up)
+#> Chain 4: 0.041 seconds (Sampling)
+#> Chain 4: 0.1 seconds (Total)
#> Chain 4:
#> Parameter Prior_Distribution Prior_Location Prior_Scale
#> 1 (Intercept) normal 20.09062 15.067370
@@ -249,8 +249,8 @@ Examples#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 1).
#> Chain 1:
-#> Chain 1: Gradient evaluation took 7e-06 seconds
-#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.07 seconds.
+#> Chain 1: Gradient evaluation took 1.1e-05 seconds
+#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.11 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
@@ -267,15 +267,15 @@ Examples#> Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 1:
-#> Chain 1: Elapsed Time: 0.022 seconds (Warm-up)
-#> Chain 1: 0.018 seconds (Sampling)
-#> Chain 1: 0.04 seconds (Total)
+#> Chain 1: Elapsed Time: 0.019 seconds (Warm-up)
+#> Chain 1: 0.016 seconds (Sampling)
+#> Chain 1: 0.035 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 2).
#> Chain 2:
-#> Chain 2: Gradient evaluation took 3e-06 seconds
-#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.03 seconds.
+#> Chain 2: Gradient evaluation took 4e-06 seconds
+#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.04 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2:
#> Chain 2:
@@ -292,9 +292,9 @@ Examples#> Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 2:
-#> Chain 2: Elapsed Time: 0.025 seconds (Warm-up)
-#> Chain 2: 0.018 seconds (Sampling)
-#> Chain 2: 0.043 seconds (Total)
+#> Chain 2: Elapsed Time: 0.021 seconds (Warm-up)
+#> Chain 2: 0.016 seconds (Sampling)
+#> Chain 2: 0.037 seconds (Total)
#> Chain 2:
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 3).
@@ -317,15 +317,15 @@ Examples#> Chain 3: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 3: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 3:
-#> Chain 3: Elapsed Time: 0.021 seconds (Warm-up)
-#> Chain 3: 0.018 seconds (Sampling)
-#> Chain 3: 0.039 seconds (Total)
+#> Chain 3: Elapsed Time: 0.019 seconds (Warm-up)
+#> Chain 3: 0.016 seconds (Sampling)
+#> Chain 3: 0.035 seconds (Total)
#> Chain 3:
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 4).
#> Chain 4:
-#> Chain 4: Gradient evaluation took 3e-06 seconds
-#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.03 seconds.
+#> Chain 4: Gradient evaluation took 5e-06 seconds
+#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.05 seconds.
#> Chain 4: Adjust your expectations accordingly!
#> Chain 4:
#> Chain 4:
@@ -342,9 +342,9 @@ Examples#> Chain 4: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 4: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 4:
-#> Chain 4: Elapsed Time: 0.024 seconds (Warm-up)
-#> Chain 4: 0.02 seconds (Sampling)
-#> Chain 4: 0.044 seconds (Total)
+#> Chain 4: Elapsed Time: 0.019 seconds (Warm-up)
+#> Chain 4: 0.018 seconds (Sampling)
+#> Chain 4: 0.037 seconds (Total)
#> Chain 4:
#> Parameter Prior_Distribution Prior_Location Prior_Scale Prior_df
#> 1 b_Intercept student_t 19.2 5.4 3
diff --git a/reference/diagnostic_draws.html b/reference/diagnostic_draws.html
index 582023287..e7d1ca8f6 100644
--- a/reference/diagnostic_draws.html
+++ b/reference/diagnostic_draws.html
@@ -7,7 +7,7 @@
bayestestR
- 0.15.0.4
+ 0.15.1
diff --git a/reference/diagnostic_posterior.html b/reference/diagnostic_posterior.html
index abaee9d70..a896ee6bf 100644
--- a/reference/diagnostic_posterior.html
+++ b/reference/diagnostic_posterior.html
@@ -9,7 +9,7 @@
bayestestR
- 0.15.0.4
+ 0.15.1
@@ -125,18 +125,30 @@ Argumentseffects
-Should parameters for fixed effects, random effects
-or both be returned? Only applies to mixed models. May be abbreviated.
+Should variables for fixed effects ("fixed"
), random effects
+("random"
) or both ("all"
) be returned? Only applies to mixed models. May
+be abbreviated.
component
-Should all predictor variables, predictor variables for the
-conditional model, the zero-inflated part of the model, the dispersion
-term or the instrumental variables be returned? Applies to models
-with zero-inflated and/or dispersion formula, or to models with instrumental
-variable (so called fixed-effects regressions). May be abbreviated. Note that the
-conditional component is also called count or mean
-component, depending on the model.
+Which type of parameters to return, such as parameters for
+the conditional model, the zero-inflated part of the model, the dispersion
+term, the instrumental variables or marginal effects be returned? Applies to
+models with zero-inflated and/or dispersion formula, or to models with
+instrumental variables (so called fixed-effects regressions), or models with
+marginal effects (from mfx). See details in section Model Components
+.May be abbreviated. Note that the conditional component also refers to the
+count or mean component - names may differ, depending on the modeling
+package. There are three convenient shortcuts (not applicable to all model
+classes):
component = "all"
returns all possible parameters.
+If component = "location"
, location parameters such as conditional
,
+zero_inflated
, smooth_terms
, or instruments
are returned (everything
+that are fixed or random effects - depending on the effects
argument -
+but no auxiliary parameters).
+For component = "distributional"
(or "auxiliary"
), components like
+sigma
, dispersion
, beta
or precision
(and other auxiliary
+parameters) are returned.
+
parameters
@@ -195,8 +207,8 @@ Examples#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 1).
#> Chain 1:
-#> Chain 1: Gradient evaluation took 7e-06 seconds
-#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.07 seconds.
+#> Chain 1: Gradient evaluation took 1e-05 seconds
+#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.1 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
@@ -213,9 +225,9 @@ Examples#> Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 1:
-#> Chain 1: Elapsed Time: 0.023 seconds (Warm-up)
-#> Chain 1: 0.018 seconds (Sampling)
-#> Chain 1: 0.041 seconds (Total)
+#> Chain 1: Elapsed Time: 0.02 seconds (Warm-up)
+#> Chain 1: 0.016 seconds (Sampling)
+#> Chain 1: 0.036 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 2).
@@ -238,15 +250,15 @@ Examples#> Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 2:
-#> Chain 2: Elapsed Time: 0.025 seconds (Warm-up)
-#> Chain 2: 0.025 seconds (Sampling)
-#> Chain 2: 0.05 seconds (Total)
+#> Chain 2: Elapsed Time: 0.021 seconds (Warm-up)
+#> Chain 2: 0.019 seconds (Sampling)
+#> Chain 2: 0.04 seconds (Total)
#> Chain 2:
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 3).
#> Chain 3:
-#> Chain 3: Gradient evaluation took 4e-06 seconds
-#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.04 seconds.
+#> Chain 3: Gradient evaluation took 3e-06 seconds
+#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.03 seconds.
#> Chain 3: Adjust your expectations accordingly!
#> Chain 3:
#> Chain 3:
@@ -263,9 +275,9 @@ Examples#> Chain 3: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 3: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 3:
-#> Chain 3: Elapsed Time: 0.024 seconds (Warm-up)
-#> Chain 3: 0.021 seconds (Sampling)
-#> Chain 3: 0.045 seconds (Total)
+#> Chain 3: Elapsed Time: 0.02 seconds (Warm-up)
+#> Chain 3: 0.019 seconds (Sampling)
+#> Chain 3: 0.039 seconds (Total)
#> Chain 3:
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 4).
@@ -288,9 +300,9 @@ Examples#> Chain 4: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 4: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 4:
-#> Chain 4: Elapsed Time: 0.022 seconds (Warm-up)
-#> Chain 4: 0.023 seconds (Sampling)
-#> Chain 4: 0.045 seconds (Total)
+#> Chain 4: Elapsed Time: 0.019 seconds (Warm-up)
+#> Chain 4: 0.021 seconds (Sampling)
+#> Chain 4: 0.04 seconds (Total)
#> Chain 4:
diagnostic_posterior(model)
#> Parameter Rhat ESS MCSE
diff --git a/reference/disgust.html b/reference/disgust.html
index 3ad133a9f..921950c40 100644
--- a/reference/disgust.html
+++ b/reference/disgust.html
@@ -7,7 +7,7 @@
bayestestR
- 0.15.0.4
+ 0.15.1
diff --git a/reference/distribution.html b/reference/distribution.html
index 3900603e0..6aff15adc 100644
--- a/reference/distribution.html
+++ b/reference/distribution.html
@@ -9,7 +9,7 @@
bayestestR
- 0.15.0.4
+ 0.15.1
diff --git a/reference/dot-extract_priors_rstanarm.html b/reference/dot-extract_priors_rstanarm.html
index c430b0cd8..8dd957dfa 100644
--- a/reference/dot-extract_priors_rstanarm.html
+++ b/reference/dot-extract_priors_rstanarm.html
@@ -7,7 +7,7 @@
bayestestR
- 0.15.0.4
+ 0.15.1
diff --git a/reference/dot-prior_new_location.html b/reference/dot-prior_new_location.html
index 1286143a6..e9aa95982 100644
--- a/reference/dot-prior_new_location.html
+++ b/reference/dot-prior_new_location.html
@@ -7,7 +7,7 @@
bayestestR
- 0.15.0.4
+ 0.15.1
diff --git a/reference/dot-select_nums.html b/reference/dot-select_nums.html
index e814b18a4..2b211bafb 100644
--- a/reference/dot-select_nums.html
+++ b/reference/dot-select_nums.html
@@ -7,7 +7,7 @@
bayestestR
- 0.15.0.4
+ 0.15.1
diff --git a/reference/effective_sample.html b/reference/effective_sample.html
index cfba8069a..739222e44 100644
--- a/reference/effective_sample.html
+++ b/reference/effective_sample.html
@@ -7,7 +7,7 @@
bayestestR
- 0.15.0.4
+ 0.15.1
diff --git a/reference/equivalence_test.html b/reference/equivalence_test.html
index 8ec743634..e703710ac 100644
--- a/reference/equivalence_test.html
+++ b/reference/equivalence_test.html
@@ -7,7 +7,7 @@
bayestestR
- 0.15.0.4
+ 0.15.1
@@ -140,11 +140,11 @@ Arguments.
-In multivariate models, range
should be a list with a numeric vectors for
-each response variable. Vector names should correspond to the name of the
-response variables. If "default"
and input is a vector, the range is set to
-c(-0.1, 0.1)
. If "default"
and input is a Bayesian model,
-rope_range()
is used.
+In multivariate models, range
should be a list with another list (one for
+each response variable) of numeric vectors . Vector names should correspond to
+the name of the response variables. If "default"
and input is a vector, the
+range is set to c(-0.1, 0.1)
. If "default"
and input is a Bayesian model,
+rope_range()
is used. See 'Examples'.
ci
@@ -319,8 +319,8 @@ Examples#>
#> SAMPLING FOR MODEL 'continuous' NOW (CHAIN 1).
#> Chain 1:
-#> Chain 1: Gradient evaluation took 2e-05 seconds
-#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.2 seconds.
+#> Chain 1: Gradient evaluation took 2.4e-05 seconds
+#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.24 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
@@ -337,15 +337,15 @@ Examples#> Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 1:
-#> Chain 1: Elapsed Time: 0.053 seconds (Warm-up)
-#> Chain 1: 0.053 seconds (Sampling)
-#> Chain 1: 0.106 seconds (Total)
+#> Chain 1: Elapsed Time: 0.046 seconds (Warm-up)
+#> Chain 1: 0.047 seconds (Sampling)
+#> Chain 1: 0.093 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'continuous' NOW (CHAIN 2).
#> Chain 2:
-#> Chain 2: Gradient evaluation took 9e-06 seconds
-#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.09 seconds.
+#> Chain 2: Gradient evaluation took 1.1e-05 seconds
+#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.11 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2:
#> Chain 2:
@@ -362,15 +362,15 @@ Examples#> Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 2:
-#> Chain 2: Elapsed Time: 0.056 seconds (Warm-up)
-#> Chain 2: 0.048 seconds (Sampling)
-#> Chain 2: 0.104 seconds (Total)
+#> Chain 2: Elapsed Time: 0.05 seconds (Warm-up)
+#> Chain 2: 0.045 seconds (Sampling)
+#> Chain 2: 0.095 seconds (Total)
#> Chain 2:
#>
#> SAMPLING FOR MODEL 'continuous' NOW (CHAIN 3).
#> Chain 3:
-#> Chain 3: Gradient evaluation took 1e-05 seconds
-#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.1 seconds.
+#> Chain 3: Gradient evaluation took 1.1e-05 seconds
+#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.11 seconds.
#> Chain 3: Adjust your expectations accordingly!
#> Chain 3:
#> Chain 3:
@@ -387,15 +387,15 @@ Examples#> Chain 3: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 3: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 3:
-#> Chain 3: Elapsed Time: 0.055 seconds (Warm-up)
-#> Chain 3: 0.052 seconds (Sampling)
-#> Chain 3: 0.107 seconds (Total)
+#> Chain 3: Elapsed Time: 0.045 seconds (Warm-up)
+#> Chain 3: 0.045 seconds (Sampling)
+#> Chain 3: 0.09 seconds (Total)
#> Chain 3:
#>
#> SAMPLING FOR MODEL 'continuous' NOW (CHAIN 4).
#> Chain 4:
-#> Chain 4: Gradient evaluation took 1e-05 seconds
-#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.1 seconds.
+#> Chain 4: Gradient evaluation took 1.1e-05 seconds
+#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.11 seconds.
#> Chain 4: Adjust your expectations accordingly!
#> Chain 4:
#> Chain 4:
@@ -412,9 +412,9 @@ Examples#> Chain 4: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 4: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 4:
-#> Chain 4: Elapsed Time: 0.057 seconds (Warm-up)
-#> Chain 4: 0.049 seconds (Sampling)
-#> Chain 4: 0.106 seconds (Total)
+#> Chain 4: Elapsed Time: 0.048 seconds (Warm-up)
+#> Chain 4: 0.042 seconds (Sampling)
+#> Chain 4: 0.09 seconds (Total)
#> Chain 4:
equivalence_test(model)
#> Possible multicollinearity between cyl and wt (r = 0.78). This might
@@ -482,8 +482,8 @@ Examples#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 1).
#> Chain 1:
-#> Chain 1: Gradient evaluation took 7e-06 seconds
-#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.07 seconds.
+#> Chain 1: Gradient evaluation took 9e-06 seconds
+#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.09 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
@@ -500,9 +500,9 @@ Examples#> Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 1:
-#> Chain 1: Elapsed Time: 0.023 seconds (Warm-up)
-#> Chain 1: 0.022 seconds (Sampling)
-#> Chain 1: 0.045 seconds (Total)
+#> Chain 1: Elapsed Time: 0.019 seconds (Warm-up)
+#> Chain 1: 0.02 seconds (Sampling)
+#> Chain 1: 0.039 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 2).
@@ -525,9 +525,9 @@ Examples#> Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 2:
-#> Chain 2: Elapsed Time: 0.025 seconds (Warm-up)
-#> Chain 2: 0.023 seconds (Sampling)
-#> Chain 2: 0.048 seconds (Total)
+#> Chain 2: Elapsed Time: 0.021 seconds (Warm-up)
+#> Chain 2: 0.021 seconds (Sampling)
+#> Chain 2: 0.042 seconds (Total)
#> Chain 2:
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 3).
@@ -550,9 +550,9 @@ Examples#> Chain 3: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 3: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 3:
-#> Chain 3: Elapsed Time: 0.022 seconds (Warm-up)
-#> Chain 3: 0.016 seconds (Sampling)
-#> Chain 3: 0.038 seconds (Total)
+#> Chain 3: Elapsed Time: 0.019 seconds (Warm-up)
+#> Chain 3: 0.014 seconds (Sampling)
+#> Chain 3: 0.033 seconds (Total)
#> Chain 3:
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 4).
@@ -575,9 +575,9 @@ Examples#> Chain 4: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 4: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 4:
-#> Chain 4: Elapsed Time: 0.024 seconds (Warm-up)
-#> Chain 4: 0.018 seconds (Sampling)
-#> Chain 4: 0.042 seconds (Total)
+#> Chain 4: Elapsed Time: 0.02 seconds (Warm-up)
+#> Chain 4: 0.016 seconds (Sampling)
+#> Chain 4: 0.036 seconds (Total)
#> Chain 4:
equivalence_test(model)
#> Possible multicollinearity between b_cyl and b_wt (r = 0.78). This might
diff --git a/reference/estimate_density.html b/reference/estimate_density.html
index 6b3f3ed13..4419da01d 100644
--- a/reference/estimate_density.html
+++ b/reference/estimate_density.html
@@ -15,7 +15,7 @@
bayestestR
- 0.15.0.4
+ 0.15.1
@@ -294,8 +294,8 @@ Examples#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 1).
#> Chain 1:
-#> Chain 1: Gradient evaluation took 7e-06 seconds
-#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.07 seconds.
+#> Chain 1: Gradient evaluation took 6e-06 seconds
+#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.06 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
@@ -312,9 +312,9 @@ Examples#> Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 1:
-#> Chain 1: Elapsed Time: 0.022 seconds (Warm-up)
-#> Chain 1: 0.016 seconds (Sampling)
-#> Chain 1: 0.038 seconds (Total)
+#> Chain 1: Elapsed Time: 0.019 seconds (Warm-up)
+#> Chain 1: 0.015 seconds (Sampling)
+#> Chain 1: 0.034 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 2).
@@ -337,9 +337,9 @@ Examples#> Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 2:
-#> Chain 2: Elapsed Time: 0.022 seconds (Warm-up)
-#> Chain 2: 0.015 seconds (Sampling)
-#> Chain 2: 0.037 seconds (Total)
+#> Chain 2: Elapsed Time: 0.02 seconds (Warm-up)
+#> Chain 2: 0.014 seconds (Sampling)
+#> Chain 2: 0.034 seconds (Total)
#> Chain 2:
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 3).
@@ -362,9 +362,9 @@ Examples#> Chain 3: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 3: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 3:
-#> Chain 3: Elapsed Time: 0.025 seconds (Warm-up)
-#> Chain 3: 0.019 seconds (Sampling)
-#> Chain 3: 0.044 seconds (Total)
+#> Chain 3: Elapsed Time: 0.021 seconds (Warm-up)
+#> Chain 3: 0.017 seconds (Sampling)
+#> Chain 3: 0.038 seconds (Total)
#> Chain 3:
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 4).
@@ -387,9 +387,9 @@ Examples#> Chain 4: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 4: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 4:
-#> Chain 4: Elapsed Time: 0.024 seconds (Warm-up)
-#> Chain 4: 0.019 seconds (Sampling)
-#> Chain 4: 0.043 seconds (Total)
+#> Chain 4: Elapsed Time: 0.02 seconds (Warm-up)
+#> Chain 4: 0.017 seconds (Sampling)
+#> Chain 4: 0.037 seconds (Total)
#> Chain 4:
estimate_density(model)
#> Parameter x y
diff --git a/reference/eti.html b/reference/eti.html
index 05f46b25c..e19b20498 100644
--- a/reference/eti.html
+++ b/reference/eti.html
@@ -15,7 +15,7 @@
bayestestR
- 0.15.0.4
+ 0.15.1
@@ -307,8 +307,8 @@ Examples#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 1).
#> Chain 1:
-#> Chain 1: Gradient evaluation took 7e-06 seconds
-#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.07 seconds.
+#> Chain 1: Gradient evaluation took 6e-06 seconds
+#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.06 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
@@ -325,15 +325,15 @@ Examples#> Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 1:
-#> Chain 1: Elapsed Time: 0.02 seconds (Warm-up)
-#> Chain 1: 0.02 seconds (Sampling)
-#> Chain 1: 0.04 seconds (Total)
+#> Chain 1: Elapsed Time: 0.019 seconds (Warm-up)
+#> Chain 1: 0.019 seconds (Sampling)
+#> Chain 1: 0.038 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 2).
#> Chain 2:
-#> Chain 2: Gradient evaluation took 2.5e-05 seconds
-#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.25 seconds.
+#> Chain 2: Gradient evaluation took 3e-06 seconds
+#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.03 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2:
#> Chain 2:
@@ -350,9 +350,9 @@ Examples#> Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 2:
-#> Chain 2: Elapsed Time: 0.023 seconds (Warm-up)
-#> Chain 2: 0.018 seconds (Sampling)
-#> Chain 2: 0.041 seconds (Total)
+#> Chain 2: Elapsed Time: 0.02 seconds (Warm-up)
+#> Chain 2: 0.019 seconds (Sampling)
+#> Chain 2: 0.039 seconds (Total)
#> Chain 2:
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 3).
@@ -375,9 +375,9 @@ Examples#> Chain 3: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 3: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 3:
-#> Chain 3: Elapsed Time: 0.024 seconds (Warm-up)
-#> Chain 3: 0.02 seconds (Sampling)
-#> Chain 3: 0.044 seconds (Total)
+#> Chain 3: Elapsed Time: 0.021 seconds (Warm-up)
+#> Chain 3: 0.018 seconds (Sampling)
+#> Chain 3: 0.039 seconds (Total)
#> Chain 3:
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 4).
@@ -400,9 +400,9 @@ Examples#> Chain 4: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 4: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 4:
-#> Chain 4: Elapsed Time: 0.024 seconds (Warm-up)
-#> Chain 4: 0.02 seconds (Sampling)
-#> Chain 4: 0.044 seconds (Total)
+#> Chain 4: Elapsed Time: 0.021 seconds (Warm-up)
+#> Chain 4: 0.018 seconds (Sampling)
+#> Chain 4: 0.039 seconds (Total)
#> Chain 4:
eti(model)
#> Equal-Tailed Interval
diff --git a/reference/hdi.html b/reference/hdi.html
index 7d8e24d64..323280a09 100644
--- a/reference/hdi.html
+++ b/reference/hdi.html
@@ -13,7 +13,7 @@
bayestestR
- 0.15.0.4
+ 0.15.1
@@ -329,8 +329,8 @@ Examples#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 1).
#> Chain 1:
-#> Chain 1: Gradient evaluation took 7e-06 seconds
-#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.07 seconds.
+#> Chain 1: Gradient evaluation took 9e-06 seconds
+#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.09 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
@@ -347,9 +347,9 @@ Examples#> Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 1:
-#> Chain 1: Elapsed Time: 0.023 seconds (Warm-up)
-#> Chain 1: 0.018 seconds (Sampling)
-#> Chain 1: 0.041 seconds (Total)
+#> Chain 1: Elapsed Time: 0.02 seconds (Warm-up)
+#> Chain 1: 0.016 seconds (Sampling)
+#> Chain 1: 0.036 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 2).
@@ -372,9 +372,9 @@ Examples#> Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 2:
-#> Chain 2: Elapsed Time: 0.023 seconds (Warm-up)
-#> Chain 2: 0.019 seconds (Sampling)
-#> Chain 2: 0.042 seconds (Total)
+#> Chain 2: Elapsed Time: 0.019 seconds (Warm-up)
+#> Chain 2: 0.017 seconds (Sampling)
+#> Chain 2: 0.036 seconds (Total)
#> Chain 2:
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 3).
@@ -397,15 +397,15 @@ Examples#> Chain 3: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 3: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 3:
-#> Chain 3: Elapsed Time: 0.024 seconds (Warm-up)
-#> Chain 3: 0.019 seconds (Sampling)
-#> Chain 3: 0.043 seconds (Total)
+#> Chain 3: Elapsed Time: 0.02 seconds (Warm-up)
+#> Chain 3: 0.017 seconds (Sampling)
+#> Chain 3: 0.037 seconds (Total)
#> Chain 3:
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 4).
#> Chain 4:
-#> Chain 4: Gradient evaluation took 4e-06 seconds
-#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.04 seconds.
+#> Chain 4: Gradient evaluation took 3e-06 seconds
+#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.03 seconds.
#> Chain 4: Adjust your expectations accordingly!
#> Chain 4:
#> Chain 4:
@@ -422,9 +422,9 @@ Examples#> Chain 4: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 4: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 4:
-#> Chain 4: Elapsed Time: 0.023 seconds (Warm-up)
-#> Chain 4: 0.02 seconds (Sampling)
-#> Chain 4: 0.043 seconds (Total)
+#> Chain 4: Elapsed Time: 0.019 seconds (Warm-up)
+#> Chain 4: 0.018 seconds (Sampling)
+#> Chain 4: 0.037 seconds (Total)
#> Chain 4:
bayestestR::hdi(model)
#> Highest Density Interval
diff --git a/reference/index.html b/reference/index.html
index fd7f7b90a..65b8c42e8 100644
--- a/reference/index.html
+++ b/reference/index.html
@@ -7,7 +7,7 @@
bayestestR
- 0.15.0.4
+ 0.15.1
diff --git a/reference/map_estimate.html b/reference/map_estimate.html
index 6ff730e1e..1ffc0aa91 100644
--- a/reference/map_estimate.html
+++ b/reference/map_estimate.html
@@ -19,7 +19,7 @@
bayestestR
- 0.15.0.4
+ 0.15.1
@@ -226,8 +226,8 @@ Examples#>
#> SAMPLING FOR MODEL 'continuous' NOW (CHAIN 1).
#> Chain 1:
-#> Chain 1: Gradient evaluation took 2e-05 seconds
-#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.2 seconds.
+#> Chain 1: Gradient evaluation took 2.1e-05 seconds
+#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.21 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
@@ -244,15 +244,15 @@ Examples#> Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 1:
-#> Chain 1: Elapsed Time: 0.049 seconds (Warm-up)
-#> Chain 1: 0.047 seconds (Sampling)
-#> Chain 1: 0.096 seconds (Total)
+#> Chain 1: Elapsed Time: 0.042 seconds (Warm-up)
+#> Chain 1: 0.041 seconds (Sampling)
+#> Chain 1: 0.083 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'continuous' NOW (CHAIN 2).
#> Chain 2:
-#> Chain 2: Gradient evaluation took 9e-06 seconds
-#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.09 seconds.
+#> Chain 2: Gradient evaluation took 1.1e-05 seconds
+#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.11 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2:
#> Chain 2:
@@ -269,15 +269,15 @@ Examples#> Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 2:
-#> Chain 2: Elapsed Time: 0.057 seconds (Warm-up)
-#> Chain 2: 0.054 seconds (Sampling)
-#> Chain 2: 0.111 seconds (Total)
+#> Chain 2: Elapsed Time: 0.049 seconds (Warm-up)
+#> Chain 2: 0.047 seconds (Sampling)
+#> Chain 2: 0.096 seconds (Total)
#> Chain 2:
#>
#> SAMPLING FOR MODEL 'continuous' NOW (CHAIN 3).
#> Chain 3:
-#> Chain 3: Gradient evaluation took 9e-06 seconds
-#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.09 seconds.
+#> Chain 3: Gradient evaluation took 1.2e-05 seconds
+#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.12 seconds.
#> Chain 3: Adjust your expectations accordingly!
#> Chain 3:
#> Chain 3:
@@ -294,15 +294,15 @@ Examples#> Chain 3: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 3: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 3:
-#> Chain 3: Elapsed Time: 0.054 seconds (Warm-up)
-#> Chain 3: 0.051 seconds (Sampling)
-#> Chain 3: 0.105 seconds (Total)
+#> Chain 3: Elapsed Time: 0.047 seconds (Warm-up)
+#> Chain 3: 0.045 seconds (Sampling)
+#> Chain 3: 0.092 seconds (Total)
#> Chain 3:
#>
#> SAMPLING FOR MODEL 'continuous' NOW (CHAIN 4).
#> Chain 4:
-#> Chain 4: Gradient evaluation took 9e-06 seconds
-#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.09 seconds.
+#> Chain 4: Gradient evaluation took 1.1e-05 seconds
+#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.11 seconds.
#> Chain 4: Adjust your expectations accordingly!
#> Chain 4:
#> Chain 4:
@@ -319,9 +319,9 @@ Examples#> Chain 4: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 4: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 4:
-#> Chain 4: Elapsed Time: 0.053 seconds (Warm-up)
-#> Chain 4: 0.055 seconds (Sampling)
-#> Chain 4: 0.108 seconds (Total)
+#> Chain 4: Elapsed Time: 0.045 seconds (Warm-up)
+#> Chain 4: 0.048 seconds (Sampling)
+#> Chain 4: 0.093 seconds (Total)
#> Chain 4:
map_estimate(model)
#> MAP Estimate
@@ -338,8 +338,8 @@ Examples#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 1).
#> Chain 1:
-#> Chain 1: Gradient evaluation took 7e-06 seconds
-#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.07 seconds.
+#> Chain 1: Gradient evaluation took 1e-05 seconds
+#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.1 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
@@ -356,9 +356,9 @@ Examples#> Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 1:
-#> Chain 1: Elapsed Time: 0.022 seconds (Warm-up)
-#> Chain 1: 0.019 seconds (Sampling)
-#> Chain 1: 0.041 seconds (Total)
+#> Chain 1: Elapsed Time: 0.019 seconds (Warm-up)
+#> Chain 1: 0.017 seconds (Sampling)
+#> Chain 1: 0.036 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 2).
@@ -381,9 +381,9 @@ Examples#> Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 2:
-#> Chain 2: Elapsed Time: 0.022 seconds (Warm-up)
-#> Chain 2: 0.019 seconds (Sampling)
-#> Chain 2: 0.041 seconds (Total)
+#> Chain 2: Elapsed Time: 0.02 seconds (Warm-up)
+#> Chain 2: 0.017 seconds (Sampling)
+#> Chain 2: 0.037 seconds (Total)
#> Chain 2:
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 3).
@@ -406,9 +406,9 @@ Examples#> Chain 3: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 3: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 3:
-#> Chain 3: Elapsed Time: 0.023 seconds (Warm-up)
-#> Chain 3: 0.018 seconds (Sampling)
-#> Chain 3: 0.041 seconds (Total)
+#> Chain 3: Elapsed Time: 0.02 seconds (Warm-up)
+#> Chain 3: 0.016 seconds (Sampling)
+#> Chain 3: 0.036 seconds (Total)
#> Chain 3:
#>
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 4).
@@ -431,9 +431,9 @@ Examples#> Chain 4: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 4: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 4:
-#> Chain 4: Elapsed Time: 0.025 seconds (Warm-up)
-#> Chain 4: 0.022 seconds (Sampling)
-#> Chain 4: 0.047 seconds (Total)
+#> Chain 4: Elapsed Time: 0.02 seconds (Warm-up)
+#> Chain 4: 0.019 seconds (Sampling)
+#> Chain 4: 0.039 seconds (Total)
#> Chain 4:
map_estimate(model)
#> MAP Estimate
diff --git a/reference/mcse.html b/reference/mcse.html
index 2ce1b621d..0e9b8fcdc 100644
--- a/reference/mcse.html
+++ b/reference/mcse.html
@@ -7,7 +7,7 @@
bayestestR
- 0.15.0.4
+ 0.15.1
diff --git a/reference/mediation.html b/reference/mediation.html
index 3b7d5f201..bcdc53228 100644
--- a/reference/mediation.html
+++ b/reference/mediation.html
@@ -11,7 +11,7 @@
bayestestR
- 0.15.0.4
+ 0.15.1
@@ -297,12 +297,12 @@ Examples#>
#> Effect | Estimate | 95% ETI
#> ----------------------------------------------------
-#> Direct Effect (ADE) | -0.039 | [-0.128, 0.051]
+#> Direct Effect (ADE) | -0.041 | [-0.124, 0.041]
#> Indirect Effect (ACME) | -0.018 | [-0.043, 0.006]
-#> Mediator Effect | -0.241 | [-0.296, -0.185]
-#> Total Effect | -0.057 | [-0.150, 0.037]
+#> Mediator Effect | -0.241 | [-0.298, -0.183]
+#> Total Effect | -0.059 | [-0.145, 0.029]
#>
-#> Proportion mediated: 31.54% [-197.50%, 260.58%]
+#> Proportion mediated: 30.30% [-216.03%, 276.63%]
#>