-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmodules.py
54 lines (47 loc) · 1.74 KB
/
modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import torch
from torch import nn
from torch.nn import Module
from torch.nn import functional as F
from torch.utils.data import Dataset
import pickle
MNIST_DIM=784
class FCEncoder(Module):
def __init__(self, input_dim, hidden_size, latent_size, dropout):
super(FCEncoder, self).__init__()
self.fc1 = nn.Linear(input_dim,hidden_size)
self.fc_mu = nn.Linear(hidden_size, latent_size)
self.fc_logvar = nn.Linear(hidden_size, latent_size)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
h1 = F.relu(self.fc1(self.dropout(x)))
mu = self.fc_mu(h1)
logvar = self.fc_logvar(h1)
return mu, logvar
class FCDecoder(Module):
def __init__(self, input_dim, hidden_size, latent_size, sigmoid=True):
super(FCDecoder, self).__init__()
self.fc1 = nn.Linear(latent_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, input_dim)
self.sigmoid=sigmoid
def forward(self, z):
h1 = F.relu(self.fc1(z))
x_hat = self.fc2(h1)
if self.sigmoid:
x_hat=torch.sigmoid(x_hat)
return x_hat
class VAE(Module):
def __init__(self, input_dim=MNIST_DIM, latent_size=2, hidden_size=400, dropout=0.5, sigmoid=True):
super(VAE,self).__init__()
self.latent_size = latent_size
self.encoder = FCEncoder(input_dim, hidden_size, latent_size, dropout)
self.decoder = FCDecoder(input_dim, hidden_size, latent_size, sigmoid=sigmoid)
self.input_dim = input_dim
def reparameterization(self, mu, logvar):
std = torch.exp(0.5*logvar)
eps = torch.rand_like(std)
return mu + eps * std
def forward(self, x):
mu,logvar = self.encoder(x.float().view(-1,self.input_dim)) # [batch_size,input_dim]
z = self.reparameterization(mu,logvar)
x_hat = self.decoder(z)
return x_hat, mu, logvar, z