-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathdemo_callbacks.py
347 lines (301 loc) · 13.1 KB
/
demo_callbacks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
# Copyright 2024 D-Wave
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import math
import dash
import pandas as pd
from dash import ALL, MATCH, Input, Output, State, ctx
from dash.exceptions import PreventUpdate
import src.employee_scheduling as employee_scheduling
import src.utils as utils
from demo_configs import (
LARGE_SCENARIO,
MEDIUM_SCENARIO,
NUM_FULL_TIME,
REQUESTED_SHIFT_ICON,
SMALL_SCENARIO,
UNAVAILABLE_ICON,
)
from demo_interface import errors_list, generate_forecast_table
@dash.callback(
Output({"type": "to-collapse-class", "index": MATCH}, "className", allow_duplicate=True),
inputs=[
Input({"type": "collapse-trigger", "index": MATCH}, "n_clicks"),
State({"type": "to-collapse-class", "index": MATCH}, "className"),
],
prevent_initial_call=True,
)
def toggle_left_column(collapse_trigger: int, to_collapse_class: str) -> str:
"""Toggles a 'collapsed' class that hides and shows some aspect of the UI.
Args:
collapse_trigger (int): The (total) number of times a collapse button has been clicked.
to_collapse_class (str): Current class name of the thing to collapse, 'collapsed' if not visible, empty string if visible
Returns:
str: The new class name of the thing to collapse.
"""
classes = to_collapse_class.split(" ") if to_collapse_class else []
if "collapsed" in classes:
classes.remove("collapsed")
return " ".join(classes)
return to_collapse_class + " collapsed" if to_collapse_class else "collapsed"
@dash.callback(
Output("num-employees-select", "value"),
Output("num-full-time-select", "value", allow_duplicate=True),
Output("consecutive-shifts-select", "value"),
Output("shifts-per-employee-select", "value"),
Output("num-employees-select", "disabled"),
Output("num-full-time-select", "disabled"),
Output("consecutive-shifts-select", "disabled"),
Output("shifts-per-employee-select", "disabled"),
inputs=[
Input("example-scenario-select", "value"),
State("custom-saved-data", "data"),
],
prevent_initial_call=True,
)
def set_scenario(
scenario: int,
custom_saved_data: dict,
) -> tuple[int, int, int, list[int], bool, bool, bool, bool]:
"""Sets the correct scenario, reverting to the saved custom setting if chosen.
Args:
scenario: The scenario preset that is selected.
custom_saved_data: The saved custom scenario data to update.
Returns:
num-employees-select: The number of employees.
num-full-time-select: The number of full-time employees.
consecutive-shifts-select: The max consecutive shifts to schedule for a part-time employee.
shifts-per-employee-select: The min/max shifts to schedule for each part-time employee.
num-employees-select-disabled: Whether to disable the number of employees setting.
num-full-time-select-disabled: Whether to disable the full-time employees setting.
consecutive-shifts-select-disabled: Whether to disable the max consecutive shifts setting.
shifts-per-employee-select-disabled: Whether to disable the min/max shifts setting.
"""
if scenario == 0:
# return custom stored selections
return *custom_saved_data.values(), False, False, False, False
scenarios = [SMALL_SCENARIO, MEDIUM_SCENARIO, LARGE_SCENARIO]
return *tuple(scenarios[scenario - 1].values()), True, True, True, True
@dash.callback(
Output("custom-saved-data", "data"),
inputs=[
Input("num-employees-select", "value"),
Input("num-full-time-select", "value"),
Input("consecutive-shifts-select", "value"),
Input("shifts-per-employee-select", "value"),
State("example-scenario-select", "value"),
State("custom-saved-data", "data"),
],
prevent_initial_call=True,
)
def custom_saved_data(
num_employees: int,
num_full_time: int,
consecutive_shifts: int,
shifts_per_employees: list[int],
scenario: int,
custom_saved_data: dict,
) -> dict:
"""Save custom data if changed while custom scenario is selected.
Args:
num_employees: The number of employees.
num_full_time: The number of full-time employees.
consecutive_shifts: The max consecutive shifts a part-time employee should be scheduled for.
shifts_per_employees: The min and max shifts each part-time employee should be scheduled for.
scenario: The scenario preset that is selected.
custom_saved_data: The saved custom scenario data to update.
Returns:
custom-saved-data: The saved custom scenario data to update.
"""
if scenario == 0:
custom_saved_data.update({ctx.triggered_id: ctx.triggered[0]["value"]})
return custom_saved_data
raise PreventUpdate
@dash.callback(
Output("availability-content", "children"),
Output("schedule-content", "children"),
Output("schedule-tab", "disabled"),
Output("tabs", "value"),
Output({"type": "to-collapse-class", "index": 1}, "style"),
Output({"type": "forecast", "index": ALL}, "value"),
Output({"type": "forecast", "index": ALL}, "placeholder"),
Output({"type": "forecast", "index": ALL}, "max"),
Output("num-full-time-select", "max"),
Output("num-full-time-select", "marks"),
Output("num-full-time-select", "value"),
inputs=[
Input("num-employees-select", "value"),
Input("num-full-time-select", "value"),
],
)
def display_initial_schedule(
num_employees: int, num_full_time: int
) -> tuple[pd.DataFrame, pd.DataFrame, bool, str, dict, list[dict]]:
"""Display initial availability schedule.
Display initial schedule in, and switch to, the availability
tab if number of employees has changed.
Args:
num_employees: The number of employees.
num_full_time: The number of full-time employees.
Returns:
availability-content: The availability tab content.
schedule-content: The schedule tab content.
schedule-tab-disabled: Whether the schedule tab should be disabled.
tabs-value: The tab that should be selected.
to-collapse-class-style: The style for the errors tab.
forecast: The forecasted employees per shift requirements value.
forecast: The forecasted employees per shift requirements placeholder.
forecast: The forecasted employees per shift requirements max.
num-full-time-select-max: The max to set the full-time select to.
num-full-time-select-marks: The marks to set for the full-time select.
num-full-time-select-value: The value to set for the full-time select.
"""
new_full_time_max = math.floor(num_employees * 3 / 4)
full_time_marks = {
NUM_FULL_TIME["min"]: str(NUM_FULL_TIME["min"]),
new_full_time_max: str(new_full_time_max),
}
num_full_time = min(num_full_time, new_full_time_max)
df = utils.build_random_sched(num_employees, num_full_time)
init_availability_table = utils.display_availability(df)
# Prepare forecast defaults
df_to_count = df.iloc[:num_full_time, :]
count = df_to_count.map(lambda cell: cell.count(REQUESTED_SHIFT_ICON)).sum()[1:].to_dict()
num_part_time = num_employees - num_full_time
count = [value + math.ceil(num_part_time / 2) for value in count.values()]
return (
init_availability_table,
init_availability_table,
True, # disable the shedule tab when changing parameters
"input-tab", # jump back to the availability tab
{"display": "none"},
count,
count,
[num_employees]*len(count),
new_full_time_max,
full_time_marks,
num_full_time
)
@dash.callback(
Output({"type": "to-collapse-class", "index": 1}, "className"),
Output("scheduled-forecast-output", "children"),
inputs=[
Input("run-button", "n_clicks"),
State({"type": "to-collapse-class", "index": 1}, "className"),
],
prevent_initial_call=True,
)
def update_ui_on_run(run_click: int, prev_classes: str) -> tuple[str, list]:
"""Hides and collapses error sidebar on button click.
Args:
run_click: The number of times the run button was clicked.
prev_classes: A string containing all the previous classes of the error sidebar.
Returns:
to-collapse-class-className: The class names for the errors sidebar.
scheduled-forecast-output: The forecasted and scheduled difference per shift.
"""
classes = prev_classes.split(" ") if prev_classes else []
if "collapsed" in classes:
return dash.no_update, []
return prev_classes + " collapsed", []
@dash.callback(
Output("schedule-content", "children", allow_duplicate=True),
Output({"type": "to-collapse-class", "index": 1}, "style", allow_duplicate=True),
Output("errors", "children"),
Output("scheduled-forecast-output", "children", allow_duplicate=True),
background=True,
inputs=[
Input("run-button", "n_clicks"),
State("shifts-per-employee-select", "value"),
State("checklist-input", "value"),
State("consecutive-shifts-select", "value"),
State("num-full-time-select", "value"),
State({"type": "forecast", "index": ALL}, "value"),
State({"type": "forecast", "index": ALL}, "placeholder"),
State("availability-content", "children"),
],
running=[
# show cancel button and hide run button, and disable and animate results tab
(Output("cancel-button", "className"), "", "display-none"), # Show/hide cancel button.
(Output("run-button", "className"), "display-none", ""), # Hides run button while running.
# switch to schedule tab while running
(Output("schedule-tab", "disabled"), False, False),
(Output("tabs", "value"), "schedule-tab", "schedule-tab"),
(Output("control-card", "disabled"), False, False),
],
cancel=[Input("cancel-button", "n_clicks")],
prevent_initial_call=True,
)
def run_optimization(
run_click: int,
shifts_per_employee: list[int],
checklist: list[int],
consecutive_shifts: int,
num_full_time: int,
forecast: list[int],
forecast_placeholder: list[int],
sched_df: pd.DataFrame,
) -> tuple[pd.DataFrame, dict, list, list]:
"""Runs the optimization and updates UI accordingly.
This is the main function which is called when the ``Run Optimization`` button is clicked.
This function takes in all form values and runs the optimization, updates the run/cancel
buttons, deactivates (and reactivates) the results tab, and updates all relevant HTML
components.
Args:
run_click: The (total) number of times the run button has been clicked.
shifts_per_employee: The min and max shifts each part-time employee should be scheduled for.
checklist: Whether the checkbox ``Allow isolated days off`` is checked.
consecutive_shifts: The max consecutive shifts a part-time employee should be scheduled for.
num_full_time: The number of full-time employees.
forecast: The forecasted employees per shift requirements.
sched_df: The schedule dataframe.
Returns:
A tuple containing all outputs to be used when updating the HTML
template (in ``demo_interface.py``). These are:
schedule-content: The completed schedule.
to-collapse-class-style: Whether to show the errors sidebar or not.
errors: The errors to include in the sidebar.
scheduled-forecast-output: The forecasted and scheduled difference per shift.
"""
if run_click == 0 or ctx.triggered_id != "run-button":
raise PreventUpdate
shifts = list(sched_df["props"]["data"][0].keys())
shifts.remove("Employee")
availability = utils.availability_to_dict(sched_df["props"]["data"])
employees = list(availability.keys())
isolated_days_allowed = True if 0 in checklist else False
forecast = [
val if isinstance(val, int)
else forecast_placeholder[i]
for i, val in enumerate(forecast)
]
cqm = employee_scheduling.build_cqm(
availability,
shifts,
*shifts_per_employee,
forecast,
isolated_days_allowed,
consecutive_shifts + 1,
num_full_time,
)
sampleset, errors = employee_scheduling.run_cqm(cqm)
sample = sampleset.first.sample
sched = utils.build_schedule_from_sample(sample, employees)
scheduled_count = sched.map(lambda cell: UNAVAILABLE_ICON not in cell).sum()[1:].to_dict()
return (
utils.display_schedule(sched, availability),
{"display": "flex"} if errors else {"display": "none"},
errors_list(errors) if errors else dash.no_update,
generate_forecast_table(forecast, scheduled_count),
)