-
Notifications
You must be signed in to change notification settings - Fork 121
/
Copy pathdocument.py
714 lines (556 loc) · 25.2 KB
/
document.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
from abc import ABC
from dygie.models.shared import fields_to_batches, batches_to_fields
import copy
import numpy as np
import re
import json
def format_float(x):
return round(x, 4)
class SpanCrossesSentencesError(ValueError):
pass
def get_sentence_of_span(span, sentence_starts, doc_tokens):
"""
Return the index of the sentence that the span is part of.
"""
# Inclusive sentence ends
sentence_ends = [x - 1 for x in sentence_starts[1:]] + [doc_tokens - 1]
in_between = [span[0] >= start and span[1] <= end
for start, end in zip(sentence_starts, sentence_ends)]
if sum(in_between) != 1:
raise SpanCrossesSentencesError
the_sentence = in_between.index(True)
return the_sentence
def update_sentences_with_clusters(sentences, clusters):
"Add cluster dictionary to each sentence, if there are coreference clusters."
for sent in sentences:
sent.cluster_dict = {} if clusters is not None else None
if clusters is None:
return sentences
for clust in clusters:
for member in clust.members:
sent = member.sentence
sent.cluster_dict[member.span.span_sent] = member.cluster_id
return sentences
def update_sentences_with_event_clusters(sentences, event_clusters):
"Add event cluster dictionary to each sentence, if there are event coreference clusters."
for sent in sentences:
sent.event_cluster_dict = {} if event_clusters is not None else None
if event_clusters is None:
return sentences
for event_clust in event_clusters:
for member in event_clust.members:
sent = member.sentence
sent.event_cluster_dict[member.span.span_sent] = member.cluster_id
return sentences
class Dataset:
def __init__(self, documents):
self.documents = documents
def __getitem__(self, i):
return self.documents[i]
def __len__(self):
return len(self.documents)
def __repr__(self):
return f"Dataset with {self.__len__()} documents."
@classmethod
def from_jsonl(cls, fname):
documents = []
with open(fname, "r") as f:
for line in f:
doc = Document.from_json(json.loads(line))
documents.append(doc)
return cls(documents)
def to_jsonl(self, fname):
to_write = [doc.to_json() for doc in self]
with open(fname, "w") as f:
for entry in to_write:
print(json.dumps(entry), file=f)
class Document:
def __init__(self, doc_key, dataset, sentences,
clusters=None, predicted_clusters=None, event_clusters=None, predicted_event_clusters=None, weight=None):
self.doc_key = doc_key
self.dataset = dataset
self.sentences = sentences
self.clusters = clusters
self.predicted_clusters = predicted_clusters
self.event_clusters = event_clusters
self.predicted_event_clusters = predicted_event_clusters
self.weight = weight
@classmethod
def from_json(cls, js):
"Read in from json-loaded dict."
cls._check_fields(js)
doc_key = js["doc_key"]
dataset = js.get("dataset")
entries = fields_to_batches(js, ["doc_key", "dataset", "clusters", "predicted_clusters",
"weight", "event_clusters","predicted_event_clusters"])
sentence_lengths = [len(entry["sentences"]) for entry in entries]
sentence_starts = np.cumsum(sentence_lengths)
sentence_starts = np.roll(sentence_starts, 1)
sentence_starts[0] = 0
sentence_starts = sentence_starts.tolist()
sentences = [Sentence(entry, sentence_start, sentence_ix)
for sentence_ix, (entry, sentence_start)
in enumerate(zip(entries, sentence_starts))]
# Store cofereference annotations.
if "clusters" in js:
clusters = [Cluster(entry, i, sentences, sentence_starts)
for i, entry in enumerate(js["clusters"])]
else:
clusters = None
# TODO(dwadden) Need to treat predicted clusters differently and update sentences
# appropriately.
if "predicted_clusters" in js:
predicted_clusters = [Cluster(entry, i, sentences, sentence_starts)
for i, entry in enumerate(js["predicted_clusters"])]
else:
predicted_clusters = None
# adapt from entity clusters
if "event_clusters" in js:
event_clusters = [Cluster(entry, i, sentences, sentence_starts)
for i, entry in enumerate(js["event_clusters"])]
else:
event_clusters = None
# TODO(dwadden) Need to treat predicted clusters differently and update sentences
# appropriately.
if "predicted_event_clusters" in js:
predicted_event_clusters = [Cluster(entry, i, sentences, sentence_starts)
for i, entry in enumerate(js["predicted_event_clusters"])]
else:
predicted_event_clusters = None
# Update the sentences with coreference cluster labels.
sentences = update_sentences_with_clusters(sentences, clusters)
sentences = update_sentences_with_event_clusters(sentences, event_clusters)
# Get the loss weight for this document.
weight = js.get("weight", None)
return cls(doc_key, dataset, sentences, clusters, predicted_clusters, event_clusters,
predicted_event_clusters, weight)
@staticmethod
def _check_fields(js):
"Make sure we only have allowed fields."
allowed_field_regex = ("doc_key|dataset|sentences|weight|.*ner$|"
".*relations$|.*clusters$|.*events$|^_.*")
allowed_field_regex = re.compile(allowed_field_regex)
unexpected = []
for field in js.keys():
if not allowed_field_regex.match(field):
unexpected.append(field)
if unexpected:
msg = f"The following unexpected fields should be prefixed with an underscore: {', '.join(unexpected)}."
raise ValueError(msg)
def to_json(self):
"Write to json dict."
res = {"doc_key": self.doc_key,
"dataset": self.dataset}
sents_json = [sent.to_json() for sent in self]
fields_json = batches_to_fields(sents_json)
res.update(fields_json)
if self.clusters is not None:
res["clusters"] = [cluster.to_json() for cluster in self.clusters]
if self.predicted_clusters is not None:
res["predicted_clusters"] = [cluster.to_json() for cluster in self.predicted_clusters]
if self.event_clusters is not None:
res["event_clusters"] = [cluster.to_json() for cluster in self.event_clusters]
if self.predicted_event_clusters is not None:
res["predicted_event_clusters"] = [cluster.to_json() for cluster in self.predicted_event_clusters]
if self.weight is not None:
res["weight"] = self.weight
return res
# TODO(dwadden) Write a unit test to make sure this does the correct thing.
def split(self, max_tokens_per_doc):
"""
Greedily split a long document into smaller documents, each shorter than
`max_tokens_per_doc`. Each split document will get the same weight as its parent.
"""
# TODO(dwadden) Implement splitting when there's coref annotations. This is more difficult
# because coreference clusters have to be split across documents.
if self.clusters is not None or self.predicted_clusters is not None:
raise NotImplementedError("Splitting documents with coreference annotations not implemented.")
if self.event_clusters is not None or self.predicted_event_clusters is not None:
raise NotImplementedError("Splitting documents with event coreference annotations not implemented.")
# If the document is already short enough, return it as a list with a single item.
if self.n_tokens <= max_tokens_per_doc:
return [self]
sentences = copy.deepcopy(self.sentences)
sentence_groups = []
current_group = []
group_length = 0
sentence_tok_offset = 0
sentence_ix_offset = 0
for sentence in sentences:
# Can't deal with single sentences longer than the limit.
if len(sentence) > max_tokens_per_doc:
msg = f"Sentence \"{''.join(sentence.text)}\" has more than {max_tokens_per_doc} tokens. Please split this sentence."
raise ValueError(msg)
if group_length + len(sentence) <= max_tokens_per_doc:
# If we're not at the limit, add it to the current sentence group.
sentence.sentence_start -= sentence_tok_offset
sentence.sentence_ix -= sentence_ix_offset
current_group.append(sentence)
group_length += len(sentence)
else:
# Otherwise, start a new sentence group and adjust sentence offsets.
sentence_groups.append(current_group)
sentence_tok_offset = sentence.sentence_start
sentence_ix_offset = sentence.sentence_ix
sentence.sentence_start -= sentence_tok_offset
sentence.sentence_ix -= sentence_ix_offset
current_group = [sentence]
group_length = len(sentence)
# Add the final sentence group.
sentence_groups.append(current_group)
# Create a separate document for each sentence group.
doc_keys = [f"{self.doc_key}_SPLIT_{i}" for i in range(len(sentence_groups))]
res = [self.__class__(doc_key, self.dataset, sentence_group,
self.clusters, self.predicted_clusters, self.weight)
for doc_key, sentence_group in zip(doc_keys, sentence_groups)]
return res
def __repr__(self):
return "\n".join([str(i) + ": " + " ".join(sent.text) for i, sent in enumerate(self.sentences)])
def __getitem__(self, ix):
return self.sentences[ix]
def __len__(self):
return len(self.sentences)
def print_plaintext(self):
for sent in self:
print(" ".join(sent.text))
@property
def n_tokens(self):
return sum([len(sent) for sent in self.sentences])
def find_cluster(self, entity):
"""
Search through coreference clusters and return the one containing the query entity, if it's
part of a cluster. If we don't find a match, return None.
"""
for clust in self.clusters:
for entry in clust:
if entry.span == entity.span:
return clust
return None
@property
def n_tokens(self):
return sum([len(sent) for sent in self.sentences])
class Sentence:
def __init__(self, entry, sentence_start, sentence_ix):
self.sentence_start = sentence_start
self.sentence_ix = sentence_ix
self.text = entry["sentences"]
# Metadata fields are prefixed with a `_`.
self.metadata = {k: v for k, v in entry.items() if re.match("^_", k)}
# Store events.
if "ner" in entry:
self.ner = [NER(this_ner, self)
for this_ner in entry["ner"]]
self.ner_dict = {entry.span.span_sent: entry.label for entry in self.ner}
else:
self.ner = None
self.ner_dict = None
# Predicted ner.
if "predicted_ner" in entry:
self.predicted_ner = [PredictedNER(this_ner, self)
for this_ner in entry["predicted_ner"]]
else:
self.predicted_ner = None
# Store relations.
if "relations" in entry:
self.relations = [Relation(this_relation, self) for
this_relation in entry["relations"]]
relation_dict = {}
for rel in self.relations:
key = (rel.pair[0].span_sent, rel.pair[1].span_sent)
relation_dict[key] = rel.label
self.relation_dict = relation_dict
else:
self.relations = None
self.relation_dict = None
# Predicted relations.
if "predicted_relations" in entry:
self.predicted_relations = [PredictedRelation(this_relation, self) for
this_relation in entry["predicted_relations"]]
else:
self.predicted_relations = None
# Store events.
if "events" in entry:
self.events = Events(entry["events"], self)
else:
self.events = None
# Predicted events.
if "predicted_events" in entry:
self.predicted_events = PredictedEvents(entry["predicted_events"], self)
else:
self.predicted_events = None
def to_json(self):
res = {"sentences": self.text}
if self.ner is not None:
res["ner"] = [entry.to_json() for entry in self.ner]
if self.predicted_ner is not None:
res["predicted_ner"] = [entry.to_json() for entry in self.predicted_ner]
if self.relations is not None:
res["relations"] = [entry.to_json() for entry in self.relations]
if self.predicted_relations is not None:
res["predicted_relations"] = [entry.to_json() for entry in self.predicted_relations]
if self.events is not None:
res["events"] = self.events.to_json()
if self.predicted_events is not None:
res["predicted_events"] = self.predicted_events.to_json()
for k, v in self.metadata.items():
res[k] = v
return res
def __repr__(self):
the_text = " ".join(self.text)
the_lengths = [len(x) for x in self.text]
tok_ixs = ""
for i, offset in enumerate(the_lengths):
true_offset = offset if i < 10 else offset - 1
tok_ixs += str(i)
tok_ixs += " " * true_offset
return the_text + "\n" + tok_ixs
def __len__(self):
return len(self.text)
class Span:
def __init__(self, start, end, sentence, sentence_offsets=False):
# The `start` and `end` are relative to the document. We convert them to be relative to the
# sentence.
self.sentence = sentence
# Need to store the sentence text to make span objects hashable.
self.sentence_text = " ".join(sentence.text)
self.start_sent = start if sentence_offsets else start - sentence.sentence_start
self.end_sent = end if sentence_offsets else end - sentence.sentence_start
@property
def start_doc(self):
return self.start_sent + self.sentence.sentence_start
@property
def end_doc(self):
return self.end_sent + self.sentence.sentence_start
@property
def span_doc(self):
return (self.start_doc, self.end_doc)
@property
def span_sent(self):
return (self.start_sent, self.end_sent)
@property
def text(self):
return self.sentence.text[self.start_sent:self.end_sent + 1]
def __repr__(self):
return str((self.start_sent, self.end_sent, self.text))
def __eq__(self, other):
return (self.span_doc == other.span_doc and
self.span_sent == other.span_sent and
self.sentence == other.sentence)
def __hash__(self):
tup = self.span_sent + (self.sentence_text,)
return hash(tup)
class Token:
def __init__(self, ix, sentence, sentence_offsets=False):
self.sentence = sentence
self.ix_sent = ix if sentence_offsets else ix - sentence.sentence_start
@property
def ix_doc(self):
return self.ix_sent + self.sentence.sentence_start
@property
def text(self):
return self.sentence.text[self.ix_sent]
def __repr__(self):
return str((self.ix_sent, self.text))
class Trigger:
def __init__(self, trig, sentence, sentence_offsets):
token = Token(trig[0], sentence, sentence_offsets)
label = trig[1]
self.token = token
self.label = label
def __repr__(self):
return self.token.__repr__()[:-1] + ", " + self.label + ")"
def to_json(self):
return [self.token.ix_doc, self.label]
class PredictedTrigger(Trigger):
def __init__(self, trig, sentence, sentence_offsets):
super().__init__(trig, sentence, sentence_offsets)
self.raw_score = trig[2]
self.softmax_score = trig[3]
def __repr__(self):
return super().__repr__() + f" with confidence {self.softmax_score:0.4f}"
def to_json(self):
return super().to_json() + [format_float(self.raw_score), format_float(self.softmax_score)]
class Argument:
def __init__(self, arg, event_type, sentence, sentence_offsets):
self.span = Span(arg[0], arg[1], sentence, sentence_offsets)
self.role = arg[2]
self.event_type = event_type
def __repr__(self):
return self.span.__repr__()[:-1] + ", " + self.event_type + ", " + self.role + ")"
def __eq__(self, other):
return (self.span == other.span and
self.role == other.role and
self.event_type == other.event_type)
def __hash__(self):
return self.span.__hash__() + hash((self.role, self.event_type))
def to_json(self):
return list(self.span.span_doc) + [self.role]
class PredictedArgument(Argument):
def __init__(self, arg, event_type, sentence, sentence_offsets):
super().__init__(arg, event_type, sentence, sentence_offsets)
self.raw_score = arg[3]
self.softmax_score = arg[4]
def __repr__(self):
return super().__repr__() + f" with confidence {self.softmax_score:0.4f}"
def to_json(self):
return super().to_json() + [format_float(self.raw_score), format_float(self.softmax_score)]
class NER:
def __init__(self, ner, sentence, sentence_offsets=False):
self.span = Span(ner[0], ner[1], sentence, sentence_offsets)
self.label = ner[2]
def __repr__(self):
return f"{self.span.__repr__()}: {self.label}"
def __eq__(self, other):
return (self.span == other.span and
self.label == other.label)
def to_json(self):
return list(self.span.span_doc) + [self.label]
class PredictedNER(NER):
def __init__(self, ner, sentence, sentence_offsets=False):
"The input should be a list: [span_start, span_end, label, raw_score, softmax_score]."
super().__init__(ner, sentence, sentence_offsets)
self.raw_score = ner[3]
self.softmax_score = ner[4]
def __repr__(self):
return super().__repr__() + f" with confidence {self.softmax_score:0.4f}"
def to_json(self):
return super().to_json() + [format_float(self.raw_score), format_float(self.softmax_score)]
class Relation:
def __init__(self, relation, sentence, sentence_offsets=False):
start1, end1 = relation[0], relation[1]
start2, end2 = relation[2], relation[3]
label = relation[4]
span1 = Span(start1, end1, sentence, sentence_offsets)
span2 = Span(start2, end2, sentence, sentence_offsets)
self.pair = (span1, span2)
self.label = label
def __repr__(self):
return f"{self.pair[0].__repr__()}, {self.pair[1].__repr__()}: {self.label}"
def __eq__(self, other):
return (self.pair == other.pair) and (self.label == other.label)
def to_json(self):
return list(self.pair[0].span_doc) + list(self.pair[1].span_doc) + [self.label]
class PredictedRelation(Relation):
def __init__(self, relation, sentence, sentence_offsets=False):
"Input format: [start_1, end_1, start_2, end_2, label, raw_score, softmax_score]."
super().__init__(relation, sentence, sentence_offsets)
self.raw_score = relation[5]
self.softmax_score = relation[6]
def __repr__(self):
return super().__repr__() + f" with confidence {self.softmax_score:0.4f}"
def to_json(self):
return super().to_json() + [format_float(self.raw_score), format_float(self.softmax_score)]
# This code is a little tricky. We want Events to use Triggers and Arguments, while PredictedEvents
# use PredictedTriggers and PredictedArguments. I create a base class that defines the methods, and
# then subclasses set the constructors to be used.
class EventBase(ABC):
def __init__(self, event, sentence, sentence_offsets=False):
trig = event[0]
args = event[1:]
self.trigger = self.trigger_constructor(trig, sentence, sentence_offsets)
self.arguments = []
for arg in args:
this_arg = self.argument_constructor(arg, self.trigger.label, sentence, sentence_offsets)
self.arguments.append(this_arg)
def to_json(self):
trig_json = self.trigger.to_json()
arg_json = [arg.to_json() for arg in self.arguments]
res = [trig_json] + arg_json
return res
def __repr__(self):
res = "<"
res += self.trigger.__repr__() + ":\n"
for arg in self.arguments:
res += 6 * " " + arg.__repr__() + ";\n"
res = res[:-2] + ">"
return res
class Event(EventBase):
trigger_constructor = Trigger
argument_constructor = Argument
class PredictedEvent(EventBase):
trigger_constructor = PredictedTrigger
argument_constructor = PredictedArgument
# Same pattern as above. Define base class, and pass constructors to child classes.
class EventsBase(ABC):
def __init__(self, events_json, sentence, sentence_offsets=False):
self.event_list = [self.event_constructor(this_event, sentence, sentence_offsets)
for this_event in events_json]
self.triggers = set([event.trigger for event in self.event_list])
self.arguments = set([arg for event in self.event_list for arg in event.arguments])
# Store trigger and argument dictionaries.
trigger_dict = {}
argument_dict = {}
for event in self.event_list:
trigger_key = event.trigger.token.ix_sent # integer index
trigger_val = event.trigger.label # trigger label
trigger_dict[trigger_key] = trigger_val
for argument in event.arguments:
arg_key = (trigger_key, argument.span.span_sent) # (trigger_ix, (arg_start, arg_end))
arg_value = argument.role # argument label
argument_dict[arg_key] = arg_value
self.trigger_dict = trigger_dict
self.argument_dict = argument_dict
def to_json(self):
return [event.to_json() for event in self]
def __len__(self):
return len(self.event_list)
def __getitem__(self, i):
return self.event_list[i]
def __repr__(self):
return "\n\n".join([event.__repr__() for event in self.event_list])
def span_matches(self, argument):
return set([candidate for candidate in self.arguments
if candidate.span.span_sent == argument.span.span_sent])
def event_type_matches(self, argument):
return set([candidate for candidate in self.span_matches(argument)
if candidate.event_type == argument.event_type])
def matches_except_event_type(self, argument):
matched = [candidate for candidate in self.span_matches(argument)
if candidate.event_type != argument.event_type
and candidate.role == argument.role]
return set(matched)
def exact_match(self, argument):
for candidate in self.arguments:
if candidate == argument:
return True
return False
class Events(EventsBase):
event_constructor = Event
class PredictedEvents(EventsBase):
event_constructor = PredictedEvent
class Cluster:
def __init__(self, cluster, cluster_id, sentences, sentence_starts):
# Make sure the cluster ID is an int.
if not isinstance(cluster_id, int):
raise TypeError("Coreference cluster ID's must be ints.")
n_tokens = sum([len(x) for x in sentences])
members = []
members_crossing_sentences = []
for entry in cluster:
try:
sentence_ix = get_sentence_of_span(entry, sentence_starts, n_tokens)
sentence = sentences[sentence_ix]
span = Span(entry[0], entry[1], sentence)
to_append = ClusterMember(span, sentence, cluster_id)
members.append(to_append)
except SpanCrossesSentencesError:
members_crossing_sentences.append(entry)
if members_crossing_sentences:
print("Found a coreference cluster member that crosses sentence boundaries; skipping.")
self.members = members
self.cluster_id = cluster_id
def to_json(self):
return [list(member.span.span_doc) for member in self.members]
def __repr__(self):
return f"{self.cluster_id}: " + self.members.__repr__()
def __getitem__(self, ix):
return self.members[ix]
def __len__(self):
return len(self.members)
class ClusterMember:
def __init__(self, span, sentence, cluster_id):
self.span = span
self.sentence = sentence
self.cluster_id = cluster_id
def __repr__(self):
return f"<{self.sentence.sentence_ix}> " + self.span.__repr__()