-
Notifications
You must be signed in to change notification settings - Fork 107
/
Copy pathvgg.py
executable file
·118 lines (103 loc) · 6.22 KB
/
vgg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import os
import tensorflow as tf
from config import config, MEAN_COLOR
from paths import INIT_WEIGHTS_DIR
slim = tf.contrib.slim
ATROUS_CKPT = os.path.join(INIT_WEIGHTS_DIR, 'atrous.ckpt')
DEFAULT_SCOPE = 'vgg_16'
DEFAULT_SSD_SCOPE = 'ssd'
class VGG(object):
def __init__(self, config, training=True, weight_decay=0.0005, depth=16, scope=DEFAULT_SCOPE, reuse=False):
self.scope = scope
self.config = config
self.weight_decay = weight_decay
self.layers = []
self.reuse = reuse
for name in self.config['layers']:
if 'conv' in name:
self.layers.append('%s/%s/%s' % (self.scope, name[:5], name))
else:
self.layers.append('%s/%s' % (self.scope, name))
def vgg_arg_scope(self):
with slim.arg_scope([slim.conv2d],
activation_fn=tf.nn.relu,
weights_regularizer=slim.l2_regularizer(self.weight_decay),
biases_initializer=tf.zeros_initializer(),
padding='SAME') as arg_sc:
return arg_sc
def create_multibox_head(self, num_classes):
locations = []
confidences = []
with tf.variable_scope(DEFAULT_SSD_SCOPE, DEFAULT_SSD_SCOPE, [self.outputs[k] for k in self.layers], reuse=self.reuse) as sc:
end_points_collection = sc.name + '_end_points'
with slim.arg_scope(self.vgg_arg_scope()):
with slim.arg_scope([slim.conv2d], outputs_collections=end_points_collection, activation_fn=None):
scale_mult = tf.get_variable("conv4_3_scale_mult", (512,), tf.float32, tf.constant_initializer(20.0))
tf.summary.histogram("scale_mult", scale_mult)
lname = '%s/conv4/conv4_3' % self.scope
self.outputs[lname] = tf.nn.l2_normalize(self.outputs[lname], (1, 2), name='conv4_3_l2_normalization')*tf.reshape(scale_mult, (1, 1, 1, 512))
for i, layer_name in enumerate(self.layers):
src_layer = self.outputs[layer_name]
shape = src_layer.get_shape()
wh = shape[1] * shape[2]
batch_size = shape[0]
num_priors = len(self.config['aspect_ratios'][i])*2 + 2
loc = slim.conv2d(src_layer, num_priors * 4, [3, 3],
scope=layer_name+'/location')
loc_sh = tf.stack([batch_size, wh * num_priors, 4])
locations.append(tf.reshape(loc, loc_sh))
tf.summary.histogram("location/"+layer_name, locations[-1])
conf = slim.conv2d(src_layer, num_priors * num_classes, [3, 3],
scope=layer_name+'/confidence')
conf_sh = tf.stack([batch_size, wh * num_priors, num_classes])
confidences.append(tf.reshape(conf, conf_sh))
tf.summary.histogram("confidence/"+layer_name, confidences[-1])
ssd_end_points = slim.utils.convert_collection_to_dict(end_points_collection)
self.outputs.update(ssd_end_points)
all_confidences = tf.concat(confidences, 1)
all_locations = tf.concat(locations, 1)
self.outputs['location'] = all_locations
self.outputs['confidence'] = all_confidences
return all_confidences, all_locations
def create_trunk(self, images):
# Convert RGB to BGR
red, green, blue = tf.split(images*255, 3, axis=3)
inputs = tf.concat([blue, green, red], 3) - MEAN_COLOR
with slim.arg_scope(self.vgg_arg_scope()):
with tf.variable_scope(self.scope, DEFAULT_SCOPE, [inputs], reuse=self.reuse) as sc:
end_points_collection = sc.name + '_end_points'
with slim.arg_scope([slim.conv2d, slim.max_pool2d],
outputs_collections=end_points_collection):
net = slim.repeat(inputs, 2, slim.conv2d, 64, [3, 3], scope='conv1')
net = slim.max_pool2d(net, [2, 2], scope='pool1')
net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3], scope='conv2')
net = slim.max_pool2d(net, [2, 2], scope='pool2')
net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3], scope='conv3')
net = slim.max_pool2d(net, [2, 2], scope='pool3')
net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv4')
net = slim.max_pool2d(net, [2, 2], scope='pool4')
net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv5')
net = slim.max_pool2d(net, [3, 3], stride=1, scope='pool5', padding='SAME')
net = slim.conv2d(net, 1024, [3, 3], rate=6, scope='fc6')
net = slim.conv2d(net, 1024, [1, 1], scope='fc7')
net = slim.stack(net, slim.conv2d, [(256, 1, 1), (512, 3, 2)], scope='conv6')
net = slim.stack(net, slim.conv2d, [(128, 1, 1), (256, 3, 2)], scope='conv7')
with slim.arg_scope([slim.conv2d], padding="VALID"):
net = slim.stack(net, slim.conv2d, [(128, 1), (256, 3)], scope='conv8')
net = slim.stack(net, slim.conv2d, [(128, 1), (256, 3)], scope='conv9')
self.outputs = slim.utils.convert_collection_to_dict(end_points_collection)
def get_imagenet_init(self, opt):
# optimizer is useful to extract slots corresponding to Adam or Momentum
# and exclude them from checkpoint assigning
vgg_names = (['%s/conv%i' % (self.scope, i) for i in range(1, 6)] +
['%s/fc%i' % (self.scope, i) for i in range(6, 8)])
variables = slim.get_variables_to_restore(include=vgg_names)
slots = set()
for v in tf.trainable_variables():
for s in opt.get_slot_names():
slot = opt.get_slot(v, s)
if slot is not None:
slots.add(slot)
variables = list(set(variables) - slots)
ckpt = ATROUS_CKPT
return slim.assign_from_checkpoint(ckpt, variables) + (variables, )