-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathutils_mnist.py
43 lines (36 loc) · 1.43 KB
/
utils_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
# Based on code from https://github.com/tensorflow/cleverhans
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import keras
from keras.datasets import mnist
from keras.utils import np_utils
import warnings
import utils
def data_mnist():
# These values are specific to MNIST
img_rows = 28
img_cols = 28
nb_classes = 10
# the data, shuffled and split between train and test sets
(X_train, y_train), (X_test, y_test) = mnist.load_data()
if keras.backend.image_dim_ordering() == 'th':
X_train = X_train.reshape(X_train.shape[0], 1, img_rows, img_cols)
X_test = X_test.reshape(X_test.shape[0], 1, img_rows, img_cols)
else:
X_train = X_train.reshape(X_train.shape[0], img_rows, img_cols, 1)
X_test = X_test.reshape(X_test.shape[0], img_rows, img_cols, 1)
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_test /= 255
print('X_train shape:', X_train.shape)
print(X_train.shape[0], 'train samples')
print(X_test.shape[0], 'test samples')
# convert class vectors to binary class matrices
Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)
from sklearn.utils import shuffle
X_train, Y_train = shuffle(X_train, Y_train)
return X_train, Y_train, X_test, Y_test