-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmainscript.m
176 lines (169 loc) · 6.3 KB
/
mainscript.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
% This code aims to reproduce the PCA-guided search, proposed by Xu, Q.,
% Ding, C., et al. in "PCA-guided search for K-means".
% Simply run the script and follow the instructions.
disp('(1) AT&T Faces Data Set')
disp('(2) MNIST Handwritten Digits Data Set')
disp('(3) Binary Alphabet Data Set')
disp('(4) Coil20 Data Set')
datachoice = input('Choose a data set among the options: ');
while (datachoice < 1 || datachoice > 4)
datachoice = input('Choose a data set among the options: ');
end
% Set the file name and the number of clusters
% Also, set some parameters for the results plot
switch datachoice
case 1
filename = 'att_faces';
k = 40;
plottitle = 'K-means on AT&T Dataset';
case 2
filename = 'mnistdigits';
k = 10;
plottitle = 'K-means on MNIST Dataset';
case 3
filename = 'binaryalphabet';
k = 26;
plottitle = 'K-means on BinAlpha Dataset';
case 4
filename = 'coil20';
k = 20;
plottitle = 'K-means on Coil20 Dataset';
otherwise
disp('Something went wrong...')
end
% Read the data set
data = readdata(filename);
% Shuffle the data
shrows = randperm(size(data, 1));
data = data(shrows, :);
% Select an algorithm
disp('(1) Random search')
disp('(2) K-means++')
disp('(3) PCA-guided search')
disp('(4) KKZ')
disp('(5) RUN ALL ALGORITHMS')
disp('(6) Random search + PCA-guided search (10d, 26d, 40d) + KKZ')
algorithmchoice = input('Please, select an algorithm: ');
while (algorithmchoice < 1 || algorithmchoice > 6)
algorithmchoice = input('Please, select an algorithm: ');
end
% Get the number of trials of the algorithm
if (algorithmchoice <= 6)
replicates = input('Please, enter a number of runs for the algorithm: ');
while (replicates < 1 || (int32(replicates) ~= replicates))
disp('You must enter a positive integer!')
replicates = input('Please, enter a number of runs for the algorithm: ');
end
end
should_plot = true;
% Select the desired algorithm and run it
% Also, set some parameters for the plot results
switch algorithmchoice
case 1
distortionvec = randomsearchkmeans(data, k, replicates);
plotlegend = 'Random Search';
case 2
distortionvec = kmeansplusplus(data, k, replicates);
plotlegend = 'K-means++';
case 3
distortionvec = pcaguidedkmeans(data, k, replicates, k);
plotlegend = 'PCA-guided Search';
case 4
distortionvec = kkz(data, k, replicates);
plotlegend = 'KKZ';
case 5
% Random search
disp('Running the Random Search...')
tic
distortionvec1 = randomsearchkmeans(data, k, replicates);
toc
% K-means++
disp('Running the K-means++...')
tic
distortionvec2 = kmeansplusplus(data, k, replicates);
toc
% PCA-guided search
disp('Running the PCA-guided Search...')
tic
distortionvec3 = pcaguidedkmeans(data, k, replicates,k);
toc
% KKZ
disp('Running the KKZ...')
tic
distortionvec4 = kkz(data, k, replicates);
toc
% Plot the results in a single graph
hold all
plot(distortionvec1, 'r', 'LineWidth', 2)
plot(distortionvec2, 'b', 'LineWidth', 2)
plot(distortionvec3, 'c', 'LineWidth', 2)
plot(distortionvec4, 'g', 'LineWidth', 2)
ylabel('Distortion')
title(plottitle)
legend('Random Search', 'K-means++', 'PCA-guided Search', 'KKZ')
hold off
% Get the minimum values of each algorithm
% Since the values are sorted in descending order, just get the
% last element
mindistortionvec = [distortionvec1(end), distortionvec2(end), distortionvec3(end), distortionvec4(end)];
fprintf('Minimum distortion values for each algorithm:\nRandom Search: %.6g\nK-means++: %.6g\nPCA-guided Search: %.6g\nKKZ: %.6g\n', ...
mindistortionvec(1), mindistortionvec(2), mindistortionvec(3), mindistortionvec(4))
% No individual plots
should_plot = false;
case 6
% Update the d value
d = [40, 26, 10];
% Random search
fprintf('Running the Random Search\n')
tic
distortionvec1 = randomsearchkmeans(data, k, replicates);
toc
% PCA-guided search d = d(1)
fprintf('Running the PCA-guided Search with dimension = %d...\n', d(1))
tic
distortionvec2 = pcaguidedkmeans(data, k, replicates, d(1));
toc
% PCA-guided search d = d(2)
fprintf('Running the PCA-guided Search with dimension = %d...\n', d(2))
tic
distortionvec3 = pcaguidedkmeans(data, k, replicates, d(2));
toc
% PCA-guided search d = d(1)
fprintf('Running the PCA-guided Search with dimension = %d...\n', d(3))
tic
distortionvec4 = pcaguidedkmeans(data, k, replicates, d(3));
toc
% KKZ
fprintf('Running the KKZ\n')
tic
distortionvec5 = kkz(data, k, replicates);
toc
% Plot the results in a single graph
hold all
plot(distortionvec1, 'm', 'LineWidth', 2)
plot(distortionvec2, 'g', 'LineWidth', 2)
plot(distortionvec3, 'k', 'LineWidth', 2)
plot(distortionvec4, 'r', 'LineWidth', 2)
plot(distortionvec5, 'b', 'LineWidth', 2)
ylabel('Distortion')
title(plottitle)
legend('Random Search', 'PCA-guided Search(40d)', 'PCA-guided Search(26d)', 'PCA-guided Search(10d)', 'KKZ')
hold off
% Get the minimum values of each algorithm
% Since the values are sorted in descending order, just get the
% last element
mindistortionvec = [distortionvec1(end), distortionvec2(end), distortionvec3(end), distortionvec4(end), distortionvec5(end)];
fprintf('Minimum distortion values for each algorithm:\nRandom Search: %.6g\nPCA-guided Search(40d): %.6g\nPCA-guided Search(26d): %.6g\nPCA-guided Search(10d): %.6g\nKKZ: %.6g\n', ...
mindistortionvec(1), mindistortionvec(2), mindistortionvec(3), mindistortionvec(4), mindistortionvec(5))
% No individual plots
should_plot = false;
otherwise
disp('Something went wrong...')
end
if ( should_plot )
% Plot the results
plot(distortionvec)
ylabel('Distortion')
title(plottitle)
legend(plotlegend)
end