-
-
Notifications
You must be signed in to change notification settings - Fork 8.7k
/
Copy pathtest_with_sklearn.py
1539 lines (1233 loc) · 49 KB
/
test_with_sklearn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import json
import os
import pickle
import random
import tempfile
import warnings
from typing import Callable, Optional
import numpy as np
import pytest
from sklearn.utils.estimator_checks import parametrize_with_checks
import xgboost as xgb
from xgboost import testing as tm
from xgboost.testing.ranking import run_ranking_categorical, run_ranking_qid_df
from xgboost.testing.shared import get_feature_weights, validate_data_initialization
from xgboost.testing.updater import get_basescore
rng = np.random.RandomState(1994)
pytestmark = [pytest.mark.skipif(**tm.no_sklearn()), tm.timeout(30)]
def test_binary_classification():
from sklearn.datasets import load_digits
from sklearn.model_selection import KFold
digits = load_digits(n_class=2)
y = digits['target']
X = digits['data']
kf = KFold(n_splits=2, shuffle=True, random_state=rng)
for cls in (xgb.XGBClassifier, xgb.XGBRFClassifier):
for train_index, test_index in kf.split(X, y):
clf = cls(random_state=42, eval_metric=['auc', 'logloss'])
xgb_model = clf.fit(X[train_index], y[train_index])
preds = xgb_model.predict(X[test_index])
labels = y[test_index]
err = sum(1 for i in range(len(preds))
if int(preds[i] > 0.5) != labels[i]) / float(len(preds))
assert err < 0.1
@pytest.mark.parametrize("objective", ["multi:softmax", "multi:softprob"])
def test_multiclass_classification(objective):
from sklearn.datasets import load_iris
from sklearn.model_selection import KFold
def check_pred(preds, labels, output_margin):
if output_margin:
err = sum(
1 for i in range(len(preds)) if preds[i].argmax() != labels[i]
) / float(len(preds))
else:
err = sum(1 for i in range(len(preds)) if preds[i] != labels[i]) / float(
len(preds)
)
assert err < 0.4
X, y = load_iris(return_X_y=True)
kf = KFold(n_splits=2, shuffle=True, random_state=rng)
for train_index, test_index in kf.split(X, y):
xgb_model = xgb.XGBClassifier(objective=objective).fit(
X[train_index], y[train_index]
)
assert xgb_model.get_booster().num_boosted_rounds() == 100
preds = xgb_model.predict(X[test_index])
# test other params in XGBClassifier().fit
preds2 = xgb_model.predict(
X[test_index], output_margin=True, iteration_range=(0, 1)
)
preds3 = xgb_model.predict(
X[test_index], output_margin=True, iteration_range=None
)
preds4 = xgb_model.predict(
X[test_index], output_margin=False, iteration_range=(0, 1)
)
labels = y[test_index]
check_pred(preds, labels, output_margin=False)
check_pred(preds2, labels, output_margin=True)
check_pred(preds3, labels, output_margin=True)
check_pred(preds4, labels, output_margin=False)
cls = xgb.XGBClassifier(n_estimators=4).fit(X, y)
assert cls.n_classes_ == 3
proba = cls.predict_proba(X)
assert proba.shape[0] == X.shape[0]
assert proba.shape[1] == cls.n_classes_
# custom objective, the default is multi:softprob so no transformation is required.
cls = xgb.XGBClassifier(n_estimators=4, objective=tm.softprob_obj(3)).fit(X, y)
proba = cls.predict_proba(X)
assert proba.shape[0] == X.shape[0]
assert proba.shape[1] == cls.n_classes_
def test_best_iteration():
from sklearn.datasets import load_iris
X, y = load_iris(return_X_y=True)
def train(booster: str, forest: Optional[int]) -> None:
rounds = 4
cls = xgb.XGBClassifier(
n_estimators=rounds,
num_parallel_tree=forest,
booster=booster,
early_stopping_rounds=3,
).fit(X, y, eval_set=[(X, y)])
assert cls.best_iteration == rounds - 1
# best_iteration is used by default, assert that under gblinear it's
# automatically ignored due to being 0.
cls.predict(X)
num_parallel_tree = 4
train("gbtree", num_parallel_tree)
train("dart", num_parallel_tree)
train("gblinear", None)
def test_ranking():
# generate random data
x_train = np.random.rand(1000, 10)
y_train = np.random.randint(5, size=1000)
train_group = np.repeat(50, 20)
x_valid = np.random.rand(200, 10)
y_valid = np.random.randint(5, size=200)
valid_group = np.repeat(50, 4)
x_test = np.random.rand(100, 10)
params = {
"tree_method": "exact",
"objective": "rank:pairwise",
"learning_rate": 0.1,
"gamma": 1.0,
"min_child_weight": 0.1,
"max_depth": 6,
"n_estimators": 4,
}
model = xgb.sklearn.XGBRanker(**params)
model.fit(
x_train,
y_train,
group=train_group,
eval_set=[(x_valid, y_valid)],
eval_group=[valid_group],
)
assert model.evals_result()
pred = model.predict(x_test)
train_data = xgb.DMatrix(x_train, y_train)
valid_data = xgb.DMatrix(x_valid, y_valid)
test_data = xgb.DMatrix(x_test)
train_data.set_group(train_group)
assert train_data.get_label().shape[0] == x_train.shape[0]
valid_data.set_group(valid_group)
params_orig = {
"tree_method": "exact",
"objective": "rank:pairwise",
"eta": 0.1,
"gamma": 1.0,
"min_child_weight": 0.1,
"max_depth": 6,
}
xgb_model_orig = xgb.train(
params_orig, train_data, num_boost_round=4, evals=[(valid_data, "validation")]
)
pred_orig = xgb_model_orig.predict(test_data)
np.testing.assert_almost_equal(pred, pred_orig)
@pytest.mark.skipif(**tm.no_pandas())
def test_ranking_categorical() -> None:
run_ranking_categorical(device="cpu")
def test_ranking_metric() -> None:
from sklearn.metrics import roc_auc_score
X, y, qid, w = tm.make_ltr(512, 4, 3, 1)
# use auc for test as ndcg_score in sklearn works only on label gain instead of exp
# gain.
# note that the auc in sklearn is different from the one in XGBoost. The one in
# sklearn compares the number of mis-classified docs, while the one in xgboost
# compares the number of mis-classified pairs.
ltr = xgb.XGBRanker(
eval_metric=roc_auc_score,
n_estimators=10,
tree_method="hist",
max_depth=2,
objective="rank:pairwise",
)
ltr.fit(
X,
y,
qid=qid,
sample_weight=w,
eval_set=[(X, y)],
eval_qid=[qid],
sample_weight_eval_set=[w],
verbose=True,
)
results = ltr.evals_result()
assert results["validation_0"]["roc_auc_score"][-1] > 0.6
@pytest.mark.skipif(**tm.no_pandas())
def test_ranking_qid_df():
import pandas as pd
run_ranking_qid_df(pd, "hist")
def test_stacking_regression():
from sklearn.datasets import load_diabetes
from sklearn.ensemble import RandomForestRegressor, StackingRegressor
from sklearn.linear_model import RidgeCV
from sklearn.model_selection import train_test_split
X, y = load_diabetes(return_X_y=True)
estimators = [
('gbm', xgb.sklearn.XGBRegressor(objective='reg:squarederror')),
('lr', RidgeCV())
]
reg = StackingRegressor(
estimators=estimators,
final_estimator=RandomForestRegressor(n_estimators=10,
random_state=42)
)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)
reg.fit(X_train, y_train).score(X_test, y_test)
def test_stacking_classification():
from sklearn.datasets import load_iris
from sklearn.ensemble import StackingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.svm import LinearSVC
X, y = load_iris(return_X_y=True)
estimators = [
('gbm', xgb.sklearn.XGBClassifier()),
('svr', make_pipeline(StandardScaler(),
LinearSVC(random_state=42)))
]
clf = StackingClassifier(
estimators=estimators, final_estimator=LogisticRegression()
)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)
clf.fit(X_train, y_train).score(X_test, y_test)
@pytest.mark.skipif(**tm.no_pandas())
def test_feature_importances_weight():
from sklearn.datasets import load_digits
digits = load_digits(n_class=2)
y = digits["target"]
X = digits["data"]
xgb_model = xgb.XGBClassifier(
random_state=0,
tree_method="exact",
learning_rate=0.1,
importance_type="weight",
base_score=0.5,
).fit(X, y)
exp = np.array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.00833333, 0.,
0., 0., 0., 0., 0., 0., 0., 0.025, 0.14166667, 0., 0., 0.,
0., 0., 0., 0.00833333, 0.25833333, 0., 0., 0., 0.,
0.03333334, 0.03333334, 0., 0.32499999, 0., 0., 0., 0.,
0.05, 0.06666667, 0., 0., 0., 0., 0., 0., 0., 0.04166667,
0., 0., 0., 0., 0., 0., 0., 0.00833333, 0., 0., 0., 0.,
0.], dtype=np.float32)
np.testing.assert_almost_equal(xgb_model.feature_importances_, exp)
# numeric columns
import pandas as pd
y = pd.Series(digits['target'])
X = pd.DataFrame(digits['data'])
xgb_model = xgb.XGBClassifier(
random_state=0,
tree_method="exact",
learning_rate=0.1,
base_score=.5,
importance_type="weight"
).fit(X, y)
np.testing.assert_almost_equal(xgb_model.feature_importances_, exp)
xgb_model = xgb.XGBClassifier(
random_state=0,
tree_method="exact",
learning_rate=0.1,
importance_type="weight",
base_score=.5,
).fit(X, y)
np.testing.assert_almost_equal(xgb_model.feature_importances_, exp)
with pytest.raises(ValueError):
xgb_model.set_params(importance_type="foo")
xgb_model.feature_importances_
X, y = load_digits(n_class=3, return_X_y=True)
cls = xgb.XGBClassifier(booster="gblinear", n_estimators=4)
cls.fit(X, y)
assert cls.feature_importances_.shape[0] == X.shape[1]
assert cls.feature_importances_.shape[1] == 3
with tempfile.TemporaryDirectory() as tmpdir:
path = os.path.join(tmpdir, "model.json")
cls.save_model(path)
with open(path, "r") as fd:
model = json.load(fd)
weights = np.array(
model["learner"]["gradient_booster"]["model"]["weights"]
).reshape((cls.n_features_in_ + 1, 3))
weights = weights[:-1, ...]
np.testing.assert_allclose(
weights / weights.sum(), cls.feature_importances_, rtol=1e-6
)
with pytest.raises(ValueError):
cls.set_params(importance_type="cover")
cls.feature_importances_
def test_feature_importances_weight_vector_leaf() -> None:
from sklearn.datasets import make_multilabel_classification
X, y = make_multilabel_classification(random_state=1994)
with pytest.raises(ValueError, match="gain/total_gain"):
clf = xgb.XGBClassifier(multi_strategy="multi_output_tree")
clf.fit(X, y)
clf.feature_importances_
with pytest.raises(ValueError, match="cover/total_cover"):
clf = xgb.XGBClassifier(
multi_strategy="multi_output_tree", importance_type="cover"
)
clf.fit(X, y)
clf.feature_importances_
clf = xgb.XGBClassifier(
multi_strategy="multi_output_tree",
importance_type="weight",
colsample_bynode=0.2,
)
clf.fit(X, y, feature_weights=np.arange(0, X.shape[1]))
fi = clf.feature_importances_
assert fi[0] == 0.0
assert fi[-1] > fi[1] * 5
w = np.polynomial.Polynomial.fit(np.arange(0, X.shape[1]), fi, deg=1)
assert w.coef[1] > 0.03
@pytest.mark.skipif(**tm.no_pandas())
def test_feature_importances_gain():
from sklearn.datasets import load_digits
digits = load_digits(n_class=2)
y = digits['target']
X = digits['data']
xgb_model = xgb.XGBClassifier(
random_state=0, tree_method="exact",
learning_rate=0.1,
importance_type="gain",
base_score=0.5,
).fit(X, y)
exp = np.array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0.00326159, 0., 0., 0., 0., 0., 0., 0., 0.,
0.00297238, 0.00988034, 0., 0., 0., 0., 0., 0.,
0.03512521, 0.41123885, 0., 0., 0., 0.,
0.01326332, 0.00160674, 0., 0.4206952, 0., 0., 0.,
0., 0.00616747, 0.01237546, 0., 0., 0., 0., 0.,
0., 0., 0.08240705, 0., 0., 0., 0., 0., 0., 0.,
0.00100649, 0., 0., 0., 0., 0.], dtype=np.float32)
np.testing.assert_almost_equal(xgb_model.feature_importances_, exp)
# numeric columns
import pandas as pd
y = pd.Series(digits['target'])
X = pd.DataFrame(digits['data'])
xgb_model = xgb.XGBClassifier(
random_state=0,
tree_method="exact",
learning_rate=0.1,
importance_type="gain",
base_score=0.5,
).fit(X, y)
np.testing.assert_almost_equal(xgb_model.feature_importances_, exp)
xgb_model = xgb.XGBClassifier(
random_state=0,
tree_method="exact",
learning_rate=0.1,
importance_type="gain",
base_score=0.5,
).fit(X, y)
np.testing.assert_almost_equal(xgb_model.feature_importances_, exp)
# no split can be found
cls = xgb.XGBClassifier(min_child_weight=1000, tree_method="hist", n_estimators=1)
cls.fit(X, y)
assert np.all(cls.feature_importances_ == 0)
def test_select_feature():
from sklearn.datasets import load_digits
from sklearn.feature_selection import SelectFromModel
digits = load_digits(n_class=2)
y = digits['target']
X = digits['data']
cls = xgb.XGBClassifier()
cls.fit(X, y)
selector = SelectFromModel(cls, prefit=True, max_features=1)
X_selected = selector.transform(X)
assert X_selected.shape[1] == 1
def test_num_parallel_tree():
from sklearn.datasets import load_diabetes
reg = xgb.XGBRegressor(n_estimators=4, num_parallel_tree=4, tree_method="hist")
X, y = load_diabetes(return_X_y=True)
bst = reg.fit(X=X, y=y)
dump = bst.get_booster().get_dump(dump_format="json")
assert len(dump) == 16
reg = xgb.XGBRFRegressor(n_estimators=4)
bst = reg.fit(X=X, y=y)
dump = bst.get_booster().get_dump(dump_format="json")
assert len(dump) == 4
config = json.loads(bst.get_booster().save_config())
assert (
int(
config["learner"]["gradient_booster"]["gbtree_model_param"][
"num_parallel_tree"
]
)
== 4
)
def test_regression():
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import KFold
X, y = fetch_california_housing(return_X_y=True)
kf = KFold(n_splits=2, shuffle=True, random_state=rng)
for train_index, test_index in kf.split(X, y):
xgb_model = xgb.XGBRegressor().fit(X[train_index], y[train_index])
preds = xgb_model.predict(X[test_index])
# test other params in XGBRegressor().fit
preds2 = xgb_model.predict(
X[test_index], output_margin=True, iteration_range=(0, np.int16(3))
)
preds3 = xgb_model.predict(
X[test_index], output_margin=True, iteration_range=None
)
preds4 = xgb_model.predict(
X[test_index], output_margin=False, iteration_range=(0, 3)
)
labels = y[test_index]
assert mean_squared_error(preds, labels) < 25
assert mean_squared_error(preds2, labels) < 350
assert mean_squared_error(preds3, labels) < 25
assert mean_squared_error(preds4, labels) < 350
with pytest.raises(AttributeError, match="feature_names_in_"):
xgb_model.feature_names_in_
def run_housing_rf_regression(tree_method):
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import KFold
X, y = fetch_california_housing(return_X_y=True)
kf = KFold(n_splits=2, shuffle=True, random_state=rng)
for train_index, test_index in kf.split(X, y):
xgb_model = xgb.XGBRFRegressor(random_state=42, tree_method=tree_method).fit(
X[train_index], y[train_index]
)
preds = xgb_model.predict(X[test_index])
labels = y[test_index]
assert mean_squared_error(preds, labels) < 35
rfreg = xgb.XGBRFRegressor()
with pytest.raises(NotImplementedError):
rfreg.set_params(early_stopping_rounds=10)
rfreg.fit(X, y)
def test_rf_regression():
run_housing_rf_regression("hist")
@pytest.mark.parametrize("tree_method", ["exact", "hist", "approx"])
def test_parameter_tuning(tree_method: str) -> None:
from sklearn.datasets import fetch_california_housing
from sklearn.model_selection import GridSearchCV
X, y = fetch_california_housing(return_X_y=True)
reg = xgb.XGBRegressor(learning_rate=0.1, tree_method=tree_method)
grid_cv = GridSearchCV(
reg, {"max_depth": [2, 4], "n_estimators": [50, 200]}, cv=2, verbose=1
)
grid_cv.fit(X, y)
assert grid_cv.best_score_ < 0.7
assert grid_cv.best_params_ == {
"n_estimators": 200,
"max_depth": 4 if tree_method == "exact" else 2,
}
def test_regression_with_custom_objective():
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import KFold
X, y = fetch_california_housing(return_X_y=True)
kf = KFold(n_splits=2, shuffle=True, random_state=rng)
for train_index, test_index in kf.split(X, y):
xgb_model = xgb.XGBRegressor(objective=tm.ls_obj).fit(
X[train_index], y[train_index]
)
preds = xgb_model.predict(X[test_index])
labels = y[test_index]
assert mean_squared_error(preds, labels) < 25
w = rng.uniform(low=0.0, high=1.0, size=X.shape[0])
reg = xgb.XGBRegressor(objective=tm.ls_obj, n_estimators=25)
reg.fit(X, y, sample_weight=w)
y_pred = reg.predict(X)
assert mean_squared_error(y_true=y, y_pred=y_pred, sample_weight=w) < 25
# Test that the custom objective function is actually used
class XGBCustomObjectiveException(Exception):
pass
def dummy_objective(y_true, y_pred):
raise XGBCustomObjectiveException()
xgb_model = xgb.XGBRegressor(objective=dummy_objective)
np.testing.assert_raises(XGBCustomObjectiveException, xgb_model.fit, X, y)
def logregobj(y_true, y_pred):
y_pred = 1.0 / (1.0 + np.exp(-y_pred))
grad = y_pred - y_true
hess = y_pred * (1.0 - y_pred)
return grad, hess
def test_classification_with_custom_objective():
from sklearn.datasets import load_digits
from sklearn.model_selection import KFold
digits = load_digits(n_class=2)
y = digits["target"]
X = digits["data"]
kf = KFold(n_splits=2, shuffle=True, random_state=rng)
for train_index, test_index in kf.split(X, y):
xgb_model = xgb.XGBClassifier(objective=logregobj)
xgb_model.fit(X[train_index], y[train_index])
preds = xgb_model.predict(X[test_index])
labels = y[test_index]
err = sum(
1 for i in range(len(preds)) if int(preds[i] > 0.5) != labels[i]
) / float(len(preds))
assert err < 0.1
# Test that the custom objective function is actually used
class XGBCustomObjectiveException(Exception):
pass
def dummy_objective(y_true, y_preds):
raise XGBCustomObjectiveException()
xgb_model = xgb.XGBClassifier(objective=dummy_objective)
np.testing.assert_raises(
XGBCustomObjectiveException,
xgb_model.fit,
X, y
)
cls = xgb.XGBClassifier(n_estimators=1)
cls.fit(X, y)
is_called = [False]
def wrapped(y, p):
is_called[0] = True
return logregobj(y, p)
cls.set_params(objective=wrapped)
cls.predict(X) # no throw
cls.fit(X, y)
assert is_called[0]
def run_sklearn_api(booster, error, n_est):
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
iris = load_iris()
tr_d, te_d, tr_l, te_l = train_test_split(iris.data, iris.target,
train_size=120, test_size=0.2)
classifier = xgb.XGBClassifier(booster=booster, n_estimators=n_est)
classifier.fit(tr_d, tr_l)
preds = classifier.predict(te_d)
labels = te_l
err = sum([1 for p, l in zip(preds, labels) if p != l]) * 1.0 / len(te_l)
assert err < error
def test_sklearn_api():
run_sklearn_api("gbtree", 0.2, 10)
run_sklearn_api("gblinear", 0.5, 100)
@pytest.mark.skipif(**tm.no_matplotlib())
@pytest.mark.skipif(**tm.no_graphviz())
def test_sklearn_plotting():
from sklearn.datasets import load_iris
iris = load_iris()
classifier = xgb.XGBClassifier()
classifier.fit(iris.data, iris.target)
import matplotlib
matplotlib.use('Agg')
from graphviz import Source
from matplotlib.axes import Axes
ax = xgb.plot_importance(classifier)
assert isinstance(ax, Axes)
assert ax.get_title() == 'Feature importance'
assert ax.get_xlabel() == 'Importance score'
assert ax.get_ylabel() == 'Features'
assert len(ax.patches) == 4
g = xgb.to_graphviz(classifier, num_trees=0)
assert isinstance(g, Source)
ax = xgb.plot_tree(classifier, num_trees=0)
assert isinstance(ax, Axes)
@pytest.mark.skipif(**tm.no_pandas())
def test_sklearn_nfolds_cv():
from sklearn.datasets import load_digits
from sklearn.model_selection import StratifiedKFold
digits = load_digits(n_class=3)
X = digits['data']
y = digits['target']
dm = xgb.DMatrix(X, label=y)
params = {
'max_depth': 2,
'eta': 1,
'verbosity': 0,
'objective':
'multi:softprob',
'num_class': 3
}
seed = 2016
nfolds = 5
skf = StratifiedKFold(n_splits=nfolds, shuffle=True, random_state=seed)
cv1 = xgb.cv(params, dm, num_boost_round=10, nfold=nfolds,
seed=seed, as_pandas=True)
cv2 = xgb.cv(params, dm, num_boost_round=10, nfold=nfolds,
folds=skf, seed=seed, as_pandas=True)
cv3 = xgb.cv(params, dm, num_boost_round=10, nfold=nfolds,
stratified=True, seed=seed, as_pandas=True)
assert cv1.shape[0] == cv2.shape[0] and cv2.shape[0] == cv3.shape[0]
assert cv2.iloc[-1, 0] == cv3.iloc[-1, 0]
@pytest.mark.skipif(**tm.no_pandas())
def test_split_value_histograms():
from sklearn.datasets import load_digits
digits_2class = load_digits(n_class=2)
X = digits_2class["data"]
y = digits_2class["target"]
dm = xgb.DMatrix(X, label=y)
params = {
"max_depth": 6,
"eta": 0.01,
"objective": "binary:logistic",
"base_score": 0.5,
}
gbdt = xgb.train(params, dm, num_boost_round=10)
assert gbdt.get_split_value_histogram("not_there", as_pandas=True).shape[0] == 0
assert gbdt.get_split_value_histogram("not_there", as_pandas=False).shape[0] == 0
assert gbdt.get_split_value_histogram("f28", bins=0).shape[0] == 1
assert gbdt.get_split_value_histogram("f28", bins=1).shape[0] == 1
assert gbdt.get_split_value_histogram("f28", bins=2).shape[0] == 2
assert gbdt.get_split_value_histogram("f28", bins=5).shape[0] == 2
assert gbdt.get_split_value_histogram("f28", bins=None).shape[0] == 2
def test_sklearn_random_state():
clf = xgb.XGBClassifier(random_state=402)
assert clf.get_xgb_params()['random_state'] == 402
clf = xgb.XGBClassifier(random_state=401)
assert clf.get_xgb_params()['random_state'] == 401
random_state = np.random.RandomState(seed=403)
clf = xgb.XGBClassifier(random_state=random_state)
assert isinstance(clf.get_xgb_params()['random_state'], int)
random_state = np.random.default_rng(seed=404)
clf = xgb.XGBClassifier(random_state=random_state)
assert isinstance(clf.get_xgb_params()['random_state'], int)
def test_sklearn_n_jobs():
clf = xgb.XGBClassifier(n_jobs=1)
assert clf.get_xgb_params()['n_jobs'] == 1
clf = xgb.XGBClassifier(n_jobs=2)
assert clf.get_xgb_params()['n_jobs'] == 2
def test_parameters_access():
from sklearn import datasets
params = {"updater": "grow_gpu_hist", "subsample": 0.5, "n_jobs": -1}
clf = xgb.XGBClassifier(n_estimators=1000, **params)
assert clf.get_params()["updater"] == "grow_gpu_hist"
assert clf.get_params()["subsample"] == 0.5
assert clf.get_params()["n_estimators"] == 1000
clf = xgb.XGBClassifier(n_estimators=1, nthread=4)
X, y = datasets.load_iris(return_X_y=True)
clf.fit(X, y)
config = json.loads(clf.get_booster().save_config())
assert int(config["learner"]["generic_param"]["nthread"]) == 4
clf.set_params(nthread=16)
config = json.loads(clf.get_booster().save_config())
assert int(config["learner"]["generic_param"]["nthread"]) == 16
clf.predict(X)
config = json.loads(clf.get_booster().save_config())
assert int(config["learner"]["generic_param"]["nthread"]) == 16
clf = xgb.XGBClassifier(n_estimators=2)
assert clf.tree_method is None
assert clf.get_params()["tree_method"] is None
clf.fit(X, y)
assert clf.get_params()["tree_method"] is None
def save_load(clf: xgb.XGBClassifier) -> xgb.XGBClassifier:
with tempfile.TemporaryDirectory() as tmpdir:
path = os.path.join(tmpdir, "model.json")
clf.save_model(path)
clf = xgb.XGBClassifier()
clf.load_model(path)
return clf
def get_tm(clf: xgb.XGBClassifier) -> str:
tm = json.loads(clf.get_booster().save_config())["learner"]["gradient_booster"][
"gbtree_train_param"
]["tree_method"]
return tm
assert get_tm(clf) == "auto" # Kept as auto, immutable since 2.0
clf = pickle.loads(pickle.dumps(clf))
assert clf.tree_method is None
assert clf.n_estimators == 2
assert clf.get_params()["tree_method"] is None
assert clf.get_params()["n_estimators"] == 2
assert get_tm(clf) == "auto" # preserved for pickle
clf = save_load(clf)
assert clf.tree_method is None
assert clf.n_estimators is None
assert clf.get_params()["tree_method"] is None
assert clf.get_params()["n_estimators"] is None
assert get_tm(clf) == "auto" # discarded for save/load_model
clf.set_params(tree_method="hist")
assert clf.get_params()["tree_method"] == "hist"
clf = pickle.loads(pickle.dumps(clf))
assert clf.get_params()["tree_method"] == "hist"
clf = save_load(clf)
assert clf.get_params()["tree_method"] is None
def test_kwargs_error():
params = {'updater': 'grow_gpu_hist', 'subsample': .5, 'n_jobs': -1}
with pytest.raises(TypeError):
clf = xgb.XGBClassifier(n_jobs=1000, **params)
assert isinstance(clf, xgb.XGBClassifier)
def test_kwargs_grid_search():
from sklearn import datasets
from sklearn.model_selection import GridSearchCV
params = {"tree_method": "hist"}
clf = xgb.XGBClassifier(n_estimators=3, **params)
assert clf.get_params()["tree_method"] == "hist"
# 'eta' is not a default argument of XGBClassifier
# Check we can still do grid search over this parameter
search_params = {"eta": [0, 0.2, 0.4]}
grid_cv = GridSearchCV(clf, search_params, cv=5)
iris = datasets.load_iris()
grid_cv.fit(iris.data, iris.target)
# Expect unique results for each parameter value
# This confirms sklearn is able to successfully update the parameter
means = grid_cv.cv_results_["mean_test_score"]
assert len(means) == len(set(means))
def test_sklearn_clone():
from sklearn.base import clone
clf = xgb.XGBClassifier(n_jobs=2)
clf.n_jobs = -1
clone(clf)
def test_sklearn_get_default_params():
from sklearn.datasets import load_digits
digits_2class = load_digits(n_class=2)
X = digits_2class["data"]
y = digits_2class["target"]
cls = xgb.XGBClassifier()
assert cls.get_params()["base_score"] is None
cls.fit(X[:4, ...], y[:4, ...])
base_score = get_basescore(cls)
np.testing.assert_equal(base_score, 0.5)
def run_validation_weights(model):
from sklearn.datasets import make_hastie_10_2
# prepare training and test data
X, y = make_hastie_10_2(n_samples=2000, random_state=42)
labels, y = np.unique(y, return_inverse=True)
X_train, X_test = X[:1600], X[1600:]
y_train, y_test = y[:1600], y[1600:]
# instantiate model
param_dist = {
"objective": "binary:logistic",
"n_estimators": 2,
"random_state": 123,
}
clf = model(**param_dist)
# train it using instance weights only in the training set
weights_train = np.random.choice([1, 2], len(X_train))
clf.set_params(eval_metric="logloss")
clf.fit(
X_train,
y_train,
sample_weight=weights_train,
eval_set=[(X_test, y_test)],
verbose=False,
)
# evaluate logloss metric on test set *without* using weights
evals_result_without_weights = clf.evals_result()
logloss_without_weights = evals_result_without_weights["validation_0"]["logloss"]
# now use weights for the test set
np.random.seed(0)
weights_test = np.random.choice([1, 2], len(X_test))
clf.set_params(eval_metric="logloss")
clf.fit(
X_train,
y_train,
sample_weight=weights_train,
eval_set=[(X_test, y_test)],
sample_weight_eval_set=[weights_test],
verbose=False,
)
evals_result_with_weights = clf.evals_result()
logloss_with_weights = evals_result_with_weights["validation_0"]["logloss"]
# check that the logloss in the test set is actually different when using
# weights than when not using them
assert all((logloss_with_weights[i] != logloss_without_weights[i] for i in [0, 1]))
with pytest.raises(ValueError):
# length of eval set and sample weight doesn't match.
clf.fit(
X_train,
y_train,
sample_weight=weights_train,
eval_set=[(X_train, y_train), (X_test, y_test)],
sample_weight_eval_set=[weights_train],
)
with pytest.raises(ValueError):
cls = xgb.XGBClassifier()
cls.fit(
X_train,
y_train,
sample_weight=weights_train,
eval_set=[(X_train, y_train), (X_test, y_test)],
sample_weight_eval_set=[weights_train],
)
def test_validation_weights():
run_validation_weights(xgb.XGBModel)
run_validation_weights(xgb.XGBClassifier)
def test_RFECV():
from sklearn.datasets import load_breast_cancer, load_diabetes, load_iris
from sklearn.feature_selection import RFECV
# Regression
X, y = load_diabetes(return_X_y=True)
bst = xgb.XGBRegressor(booster='gblinear', learning_rate=0.1,
n_estimators=10,
objective='reg:squarederror',
random_state=0, verbosity=0)
rfecv = RFECV(
estimator=bst, step=1, cv=3, scoring='neg_mean_squared_error')
rfecv.fit(X, y)
# Binary classification
X, y = load_breast_cancer(return_X_y=True)
bst = xgb.XGBClassifier(booster='gblinear', learning_rate=0.1,
n_estimators=10,
objective='binary:logistic',
random_state=0, verbosity=0)
rfecv = RFECV(estimator=bst, step=0.5, cv=3, scoring='roc_auc')
rfecv.fit(X, y)
# Multi-class classification
X, y = load_iris(return_X_y=True)
bst = xgb.XGBClassifier(base_score=0.4, booster='gblinear',
learning_rate=0.1,
n_estimators=10,
objective='multi:softprob',
random_state=0, reg_alpha=0.001, reg_lambda=0.01,
scale_pos_weight=0.5, verbosity=0)
rfecv = RFECV(estimator=bst, step=0.5, cv=3, scoring='neg_log_loss')
rfecv.fit(X, y)
X[0:4, :] = np.nan # verify scikit_learn doesn't throw with nan
reg = xgb.XGBRegressor()
rfecv = RFECV(estimator=reg)
rfecv.fit(X, y)
cls = xgb.XGBClassifier()
rfecv = RFECV(estimator=cls, step=0.5, cv=3,
scoring='neg_mean_squared_error')
rfecv.fit(X, y)
def test_XGBClassifier_resume():
from sklearn.datasets import load_breast_cancer
from sklearn.metrics import log_loss