-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcluster.py
47 lines (37 loc) · 1.44 KB
/
cluster.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import sqlite3
import pandas as pd
import numpy as np
from sklearn.cluster import KMeans
from sklearn.metrics.cluster import adjusted_mutual_info_score, silhouette_score
import argparse
def read(conn, name):
df = pd.read_sql(f'SELECT vec, label_ids FROM {name} JOIN Files ON {name}.file_id == Files.file_id', conn)
vectors = []
for v in df['vec']:
vectors.append(list(map(float, v.split(','))))
labels = []
for lbls in df['label_ids']:
labels.append(list(map(int, lbls.split(','))))
vectors_mult = []
labels_mult = []
for v, lbls in zip(vectors, labels):
for l in lbls:
vectors_mult.append(v)
labels_mult.append(l)
return np.asarray(vectors_mult), np.asarray(labels_mult)
def cluster(vec, n_clusters):
return KMeans(n_clusters, random_state=42).fit(vec).labels_
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', choices=['mouse', 'trecgen', '20ng'])
args = parser.parse_args()
conn = sqlite3.connect(f'data/{args.dataset}.sqlite')
vector_names = ['bert', 'word2vec', 'pv_dbow', 'lsa', 'lda']
for name in vector_names:
v, true_labels = read(conn, name)
cluster_labels = cluster(v, len(set(true_labels)))
print('{}: {:.4f}, {:.4f}'.format(
name,
adjusted_mutual_info_score(cluster_labels, true_labels),
silhouette_score(v, cluster_labels)
))