-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathrun.py
143 lines (122 loc) · 5.54 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import re
import time
import json
import pickle
import random
import argparse
import numpy as np
from utils import *
from generation import *
from tqdm import tqdm
from data_utils import StrategyQA, GSM8k, Aqua, ECQA
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', default='SQA', type=str)
parser.add_argument('--num_samples', default=100, type=int)
parser.add_argument('--round', default=2, type=int)
args = parser.parse_args()
if args.dataset == "SQA":
data = StrategyQA(data_dir=f'./dataset/{args.dataset}')
elif args.dataset == "ECQA":
data = ECQA(data_dir=f'./dataset/{args.dataset}')
elif args.dataset == "GSM8k":
data = GSM8k(data_dir=f'./dataset/{args.dataset}')
elif args.dataset == "Aqua":
data = Aqua(data_dir=f'./dataset/{args.dataset}')
test_samples = data.get_test_samples()[:args.num_samples]
print(f"Number of test samples={len(test_samples)}")
with open(f'convincing/{args.dataset}/chatgpt.json', 'r') as f:
convincing_gpt = json.load(f)
with open(f'convincing/{args.dataset}/claude.json', 'r') as f:
convincing_claude = json.load(f)
with open(f'convincing/{args.dataset}/bard.json', 'r') as f:
convincing_bard = json.load(f)
claude = ClaudeModel()
# Phase1: Initial Response Generation
claude_result = []
while True:
for test_sample in tqdm(test_samples[len(claude_result):]):
tmp = {}
tmp['gold_answer'] = test_sample['answer']
try:
result = claude.claude_gen_ans(test_sample,
convincing_samples=convincing_gpt+convincing_bard,
additional_instruc=None,
intervene=False,
dataset=args.dataset)
except ValueError:
print("cannot generate valid response for this sample.")
result = invalid_result(args.dataset)
if result == 403:
pause = input("rate limit: let's take a break. enter anything to resume: ")
if pause: break
tmp['prediction'] = result
claude_result.append(tmp)
time.sleep(1)
break
gpt_result = []
for test_sample in tqdm(test_samples[len(gpt_result):]):
tmp = {}
tmp['gold_answer'] = test_sample['answer']
try:
result = gpt_gen_ans(test_sample,
convincing_samples=convincing_claude+convincing_bard,
additional_instruc=None,
intervene=False,
dataset=args.dataset)
except InvalidRequestError:
print("blocked by Azure OpenAI’s content management policy.")
result = invalid_result(args.dataset)
tmp['prediction'] = result
gpt_result.append(tmp)
time.sleep(1)
bard_result = []
for test_sample in tqdm(test_samples[len(bard_result):]):
tmp = {}
tmp['gold_answer'] = test_sample['answer']
try:
result = bard_gen_ans(test_sample,
convincing_samples=convincing_claude+convincing_gpt,
additional_instruc=None,
intervene=False,
dataset=args.dataset)
tmp['prediction'] = result
except ValueError:
tmp['prediction'] = invalid_result(args.dataset)
bard_result.append(tmp)
time.sleep(1)
# Evaluation for the initial round
all_results = []
for c, g, b in zip(claude_result, gpt_result, bard_result):
tmp = {}
tmp['gold_answer'] = c['gold_answer']
tmp['claude_output_0'] = c['prediction']
tmp['gpt3_output_0'] = g['prediction']
tmp['bard_output_0'] = b['prediction']
all_results.append(tmp)
all_results = clean_output(all_results, 0, dataset=args.dataset)
all_results = parse_output(all_results, 0)
print(f"Initial Round Performance: {evaluate_all(all_results, 0)}")
# Phase2: Multi-Round Discussion
for r in range(1, args.round+1):
print(f"----- Round {r} Discussion -----")
all_results = claude.claude_debate(test_samples,
all_results,
rounds=r,
convincing_samples=convincing_gpt+convincing_bard,
dataset=args.dataset)
all_results = gpt_debate(test_samples,
all_results,
rounds=r,
convincing_samples=convincing_claude+convincing_bard,
dataset=args.dataset)
all_results = bard_debate(test_samples,
all_results,
rounds=r,
convincing_samples=convincing_claude+convincing_gpt,
dataset=args.dataset)
all_results = clean_output(all_results, r, dataset=args.dataset)
all_results = parse_output(all_results, r)
print(f"Round {r} Performance: {evaluate_all(all_results, r)}")
with open(f'{args.dataset}_round_{args.round}.pkl', 'wb') as f:
pickle.dump(all_results, f)