-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathgeneration.py
231 lines (200 loc) · 11.3 KB
/
generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import os
import time
import backoff
from tqdm import tqdm
from dotenv import load_dotenv
from utils import prepare_context, prepare_context_for_chat_assistant, prepare_context_for_bard, parse_json, invalid_result
import openai
from claude import Client
import google.generativeai as palm
from curl_cffi import CurlError
from json import JSONDecodeError
from requests.exceptions import RequestException
from google.api_core.exceptions import ServiceUnavailable
from openai.error import RateLimitError, APIError, ServiceUnavailableError, APIConnectionError, InvalidRequestError
load_dotenv()
openai.api_type = "azure"
openai.api_base = os.environ['OPEN_AI_API_BASE']
openai.api_version = os.environ['OPEN_AI_API_VERSION']
openai.api_key = os.environ['OPEN_AI_API_KEY']
palm.configure(api_key=os.environ['PALM_API_KEY'])
# Note: you can add more account in .env and here
claude_coockies = [c for c in [os.environ['CLAUDE_COOCKIE1'], os.environ['CLAUDE_COOCKIE2'], os.environ['CLAUDE_COOCKIE3'], os.environ['CLAUDE_COOCKIE4'], os.environ['CLAUDE_COOCKIE5']] if c]
class ClaudeModel:
def __init__(self):
self.coockies = claude_coockies
self.claude_api = self.connect()
@backoff.on_exception(backoff.expo, (CurlError, RequestException), max_tries=5)
def connect(self):
for coockie in self.coockies:
claude_api = Client(coockie)
uuid = claude_api.create_new_chat()['uuid']
output = claude_api.send_message("Hi, what is your name and where are you from?", uuid)
if output:
print(output)
print("claude connected successfully.")
return claude_api
print("all coockies are not available now.")
return None
@backoff.on_exception(backoff.expo, (CurlError, RequestException, ValueError), max_tries=3)
def claude_gen_ans(self, sample, convincing_samples=None, additional_instruc=None, intervene=False, dataset="SQA"):
contexts = prepare_context(sample, convincing_samples, intervene, dataset)
if additional_instruc:
contexts += " ".join(additional_instruc)
if not self.claude_api:
print("claude is not connected. trying to connect...")
self.claude_api = self.connect()
print("claude is connected.")
uuid = self.claude_api.create_new_chat()['uuid']
output = self.claude_api.send_message(contexts, uuid)
if output:
result = parse_json(output)
if result == "ERR_SYNTAX":
print("incomplete JSON format.")
print(output)
print("-----------------------")
raise ValueError("incomplete JSON format.")
else:
print("reconnecting claude using different coockie...")
self.claude_api = self.connect()
if self.claude_api:
uuid = self.claude_api.create_new_chat()['uuid']
output = self.claude_api.send_message(contexts, uuid)
result = parse_json(output)
else:
print("take a rest for the count down...")
return 403
if not result:
result = invalid_result(dataset)
if dataset == "SQA":
result['answer'] = result['answer'].lower()
elif dataset == "Aqua":
result['answer'] = result['answer'].upper()
elif dataset in ["GSM8k", "ECQA"]:
result['answer'] = str(result['answer'])
return result
def claude_debate(self, test_samples, all_results, rounds, convincing_samples, dataset):
r = '_' + str(rounds-1)
result = None
for i, s in tqdm(enumerate(all_results)):
if 'claude_output_'+str(rounds) not in s and 'debate_prompt'+ r in s and len(s['debate_prompt'+r]):
additional_instruc = ["\n\nCarefully review the following solutions from other agents as additional information, and provide your own answer and step-by-step reasoning to the question."]
additional_instruc.append("Clearly states that which pointview do you agree or disagree and why.\n\n")
additional_instruc.append(s['debate_prompt'+r])
additional_instruc.append("Output your answer in json format, with the format as follows: {\"reasoning\": \"\", \"answer\": \"\", \"confidence_level\": \"\"}. Please strictly output in JSON format.")
try:
result = self.claude_gen_ans(test_samples[i],
convincing_samples=convincing_samples,
additional_instruc=additional_instruc,
intervene=False,
dataset=dataset)
except ValueError:
print(result)
s['claude_output_'+str(rounds)] = s['claude_output'+r]
if result != 403:
s['claude_output_'+str(rounds)] = result
else:
print("taking a rest for the count down...")
break
return all_results
@backoff.on_exception(backoff.expo, (RateLimitError, APIError, ServiceUnavailableError, APIConnectionError, ValueError), max_tries=5)
def gpt_gen_ans(sample, convincing_samples=None, additional_instruc=None, intervene=False, dataset="SQA"):
contexts = prepare_context_for_chat_assistant(sample, convincing_samples, intervene, dataset)
if additional_instruc:
contexts[-1]['content'] += " ".join(additional_instruc)
# print(contexts)
completion = openai.ChatCompletion.create(
engine="gpt-35-turbo",
messages=contexts)
output = completion['choices'][0]['message']['content']
if output:
if "{" not in output or "}" not in output:
raise ValueError("cannot find { or } in the model output.")
result = parse_json(output)
if result == "ERR_SYNTAX":
raise ValueError("incomplete JSON format.")
if not result:
result = invalid_result(dataset)
if dataset == "SQA":
result['answer'] = result['answer'].lower()
elif dataset == "Aqua":
result['answer'] = result['answer'].upper()
elif dataset in ["GSM8k", "ECQA"]:
result['answer'] = str(result['answer'])
return result
@backoff.on_exception(backoff.expo, (ServiceUnavailable, ValueError, TypeError), max_tries=5)
def bard_gen_ans(sample, convincing_samples=None, additional_instruc=None, intervene=False, dataset="SQA"):
msg, cs, us = prepare_context_for_bard(sample, convincing_samples, intervene, dataset)
if additional_instruc:
msg += " ".join(additional_instruc)
response = palm.chat(
examples=cs+us,
messages=msg)
if not response.last:
raise ValueError
if "{" not in response.last and "}" not in response.last:
# Bard sometimes doesn't follow the instruction of generate a JSON format output
print("parsing the output into json format using bard...")
bard_json = bard_transform_json(response.last, dataset)
result = parse_json(bard_json)
else:
result = parse_json(response.last)
if result == "ERR_SYNTAX":
raise ValueError("incomplete JSON format.")
if dataset == "SQA":
result['answer'] = result['answer'].lower()
elif dataset == "Aqua":
result['answer'] = result['answer'].upper()
elif dataset in ["GSM8k", "ECQA"]:
result['answer'] = str(result['answer'])
return result
def gpt_debate(test_samples, all_results, rounds, convincing_samples, dataset):
r = '_' + str(rounds-1)
for i, s in tqdm(enumerate(all_results)):
if 'gpt3_output_'+str(rounds) not in s and 'debate_prompt'+ r in s and len(s['debate_prompt'+r]):
additional_instruc = ["\n\nCarefully review the following solutions from other agents as additional information, and provide your own answer and step-by-step reasoning to the question."]
additional_instruc.append("Clearly states that which pointview do you agree or disagree and why.\n\n")
additional_instruc.append(s['debate_prompt'+r])
additional_instruc.append("Output your answer in json format, with the format as follows: {\"reasoning\": \"\", \"answer\": \"\", \"confidence_level\": \"\"}. Please strictly output in JSON format.")
result = gpt_gen_ans(test_samples[i],
convincing_samples=convincing_samples,
additional_instruc=additional_instruc,
intervene=False,
dataset=dataset)
s['gpt3_output_'+str(rounds)] = result
return all_results
def bard_debate(test_samples, all_results, rounds, convincing_samples, dataset):
r = '_' + str(rounds-1)
for i, s in tqdm(enumerate(all_results)):
if 'bard_output_'+str(rounds) not in s and 'debate_prompt'+ r in s and len(s['debate_prompt'+r]):
additional_instruc = ["\n\nCarefully review the following solutions from other agents as additional information, and provide your own answer and step-by-step reasoning to the question."]
additional_instruc.append("Clearly states that which pointview do you agree or disagree and why.\n\n")
additional_instruc.append(s['debate_prompt'+r])
additional_instruc.append("Output your answer in json format, with the format as follows: {\"reasoning\": \"\", \"answer\": \"\", \"confidence_level\": \"\"}. Please strictly output in JSON format.")
try:
result = bard_gen_ans(test_samples[i],
convincing_samples=convincing_samples,
additional_instruc=additional_instruc,
intervene=False,
dataset=dataset)
except ValueError:
print("cannot generate valid answer for this sample.")
result = invalid_result(dataset)
s['bard_output_'+str(rounds)] = result
time.sleep(1)
return all_results
def bard_transform_json(model_output, dataset):
prompt = "Transform the following paragraph to fit in the JSON format: {\"reasoning\": \"\", \"answer\": \"\", \"confidence_level\": \"\"}"
prompt += "Place all of the reasoning of why the answer is derived in \"reasoning\" field."
if dataset == "SQA":
prompt += "Place only yes or no in the \"answer\" field."
elif dataset=="GSM8k":
prompt += "Place only a single numeric value in the \"answer\" field."
elif dataset=="ECQA":
prompt += "Place only 1,2,3,4,5 representing your choice in the \"answer\" field."
elif dataset=="Aqua":
prompt += "Place only A,B,C,D,E representing your choice in the \"answer\" field."
prompt += "Place the confidence level in the \"confidence_level\" field."
prompt += model_output
response = palm.chat(messages=prompt)
return response.last