-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_seg.py
646 lines (537 loc) · 31.6 KB
/
main_seg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
import os
import argparse
import torch
import numpy as np
import torch.nn as nn
import torch.optim as optim
from pytorch3d.transforms import RotateAxisAngle, Rotate, random_rotations
from torch.optim.lr_scheduler import CosineAnnealingLR, StepLR
from torch.utils.data import DataLoader
from sklearn.metrics import accuracy_score, balanced_accuracy_score, f1_score
from tqdm import tqdm
from util import IOStream, cls_bal_loss, cal_loss, calculate_shape_IoU
from models.model_seg import Model
from data import ShapeNetPart
from visualdl import LogWriter
class_choices = ['airplane', 'bag', 'cap', 'car', 'chair', 'earphone', 'guitar', 'knife', 'lamp', 'laptop', 'motorbike', 'mug', 'pistol', 'rocket', 'skateboard', 'table']
seg_num = [4, 2, 2, 4, 4, 3, 3, 2, 4, 2, 6, 2, 3, 3, 3, 3]
index_start = [0, 4, 6, 8, 12, 16, 19, 22, 24, 28, 30, 36, 38, 41, 44, 47]
seg_classes = {'Earphone': [16, 17, 18], 'Motorbike': [30, 31, 32, 33, 34, 35], 'Rocket': [41, 42, 43],
'Car': [8, 9, 10, 11], 'Laptop': [28, 29], 'Cap': [6, 7], 'Skateboard': [44, 45, 46], 'Mug': [36, 37],
'Guitar': [19, 20, 21], 'Bag': [4, 5], 'Lamp': [24, 25, 26, 27], 'Table': [47, 48, 49],
'Airplane': [0, 1, 2, 3], 'Pistol': [38, 39, 40], 'Chair': [12, 13, 14, 15], 'Knife': [22, 23]}
seg_label_to_cat = {} # {0:Airplane, 1:Airplane, ...49:Table}
for cat in seg_classes.keys():
for label in seg_classes[cat]:
seg_label_to_cat[label] = cat
def _init_():
if not os.path.exists('checkpoints'):
os.makedirs('checkpoints')
if not os.path.exists('checkpoints/' + args.exp_name):
os.makedirs('checkpoints/' + args.exp_name)
if args.mode == 'train':
if not os.path.exists('checkpoints/' + args.exp_name + '/' + 'models'):
os.makedirs('checkpoints/' + args.exp_name + '/' + 'models')
os.system('cp models/model_seg.py checkpoints' + '/' + args.exp_name + '/' + 'model.py')
os.system('cp data.py checkpoints' + '/' + args.exp_name + '/' + 'data.py')
os.system('cp main_seg.py checkpoints' + '/' + args.exp_name + '/' + 'main.py')
os.system('cp util.py checkpoints' + '/' + args.exp_name + '/' + 'util.py')
os.system('cp models/model_util.py checkpoints' + '/' + args.exp_name + '/' + 'model_util.py')
os.system('cp models/propagation.py checkpoints' + '/' + args.exp_name + '/' + 'propagation.py')
def train(args, io):
def seed_worker(worker_id):
worker_seed = torch.initial_seed()%2**32
np.random.seed(worker_seed)
train_dataset = ShapeNetPart(scale=[args.scale1, args.scale2], partition='trainval', num_points=args.num_points, class_choice=args.class_choice)
if (len(train_dataset) < 100):
drop_last = False
else:
drop_last = True
train_loader = DataLoader(train_dataset, num_workers=8, batch_size=args.batch_size, shuffle=True, drop_last=drop_last, worker_init_fn=seed_worker)
test_loader = DataLoader(ShapeNetPart(scale=[args.scale1, args.scale2], partition='test', num_points=args.num_points, class_choice=args.class_choice),
num_workers=8, batch_size=args.test_batch_size, shuffle=True, drop_last=False, worker_init_fn=seed_worker)
seg_num_all = train_loader.dataset.seg_num_all
seg_start_index = train_loader.dataset.seg_start_index
num_classes = 16
num_part = 50
device = torch.device("cuda" if args.cuda else "cpu")
args.device = device
model = Model(args).cuda()
if args.use_sgd:
print("Use SGD")
opt = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=1e-4)
else:
print("Use Adam")
opt = optim.Adam(model.parameters(), lr=args.lr, betas=(0.9, 0.999), weight_decay=args.decay)
if args.scheduler == 'cos':
scheduler = CosineAnnealingLR(opt, args.epochs, eta_min=args.lr / 100)
elif args.scheduler == 'step':
scheduler = StepLR(opt, step_size=30, gamma=0.5)
elif args.scheduler == 'multistep':
scheduler = MultiStepLR(opt, [160, 210], gamma=0.1)
best_acc = 0.0
best_bal_acc = 0.0
best_ious = 0.0
best_mIoU = 0.0
best_z_acc = 0.0
best_z_bal_acc = 0.0
best_z_ious = 0.0
best_z_mIoU = 0.0
with LogWriter(logdir='checkpoints/%s/log/train' % args.exp_name) as writer:
for epoch in range(1, args.epochs + 1):
model.train()
train_loss = 0.0
loss_cls = 0.0
loss_dir_local = 0.0
loss_dir_global = 0.0
loss_orth_local = 0.0
loss_orth_global = 0.0
loss_feat_local = 0.0
loss_feat_global = 0.0
count = 0.0
test_metrics = {}
total_correct = 0
total_seen = 0
total_seen_class = [0 for _ in range(num_part)]
total_correct_class = [0 for _ in range(num_part)]
shape_ious = {cat: [] for cat in seg_classes.keys()}
for batch_data in tqdm(train_loader, total=len(train_loader)):
data, label, seg = batch_data
batch_size, num_point,_ = data.size()
seg = seg - seg_start_index
label_one_hot = np.zeros((label.shape[0], 16))
for idx in range(label.shape[0]):
label_one_hot[idx, label[idx]] = 1
label_one_hot = torch.from_numpy(label_one_hot.astype(np.float32))
data, label_one_hot, seg = data.to(device), label_one_hot.to(device).squeeze(), seg.to(device)
if args.train_rot == 'z':
trot = RotateAxisAngle(angle=torch.rand(batch_size) * 360, axis="Z", degrees=True).to(device)
elif args.train_rot == 'so3':
trot = Rotate(R=random_rotations(batch_size)).to(device)
data = trot.transform_points(data)
opt.zero_grad()
loss, logits, loss_list = model(data, label_one_hot, seg, train=True)
loss.backward()
opt.step()
preds = logits.max(dim=1)[1]
count += batch_size
train_loss += loss.item() * batch_size
loss_cls += loss_list[0].item() * batch_size
loss_dir_local += loss_list[1].item() * batch_size
loss_dir_global += loss_list[2].item() * batch_size
loss_orth_local += loss_list[3].item() * batch_size
loss_orth_global += loss_list[4].item() * batch_size
loss_feat_local += loss_list[5].item() * batch_size
loss_feat_global += loss_list[6].item() * batch_size
logits = logits.detach().cpu()
cur_pred_val = logits.detach().cpu().numpy()
cur_pred_val_logits = cur_pred_val
cur_pred_val = np.zeros((batch_size, num_point)).astype(np.int32)
seg = seg.cpu().data.numpy()
for i in range(batch_size):
cat = seg_label_to_cat[seg[i, 0]]
logits = cur_pred_val_logits[i, :, :]
cur_pred_val[i, :] = np.argmax(logits[:, seg_classes[cat]], 1) + seg_classes[cat][0]
correct = np.sum(cur_pred_val == seg)
total_correct += correct
total_seen += (batch_size * num_point)
for l in range(num_part):
total_seen_class[l] += np.sum(seg == l)
total_correct_class[l] += (np.sum((cur_pred_val == l) & (seg == l)))
for i in range(batch_size):
segp = cur_pred_val[i, :]
segl = seg[i, :]
cat = seg_label_to_cat[segl[0]]
part_ious = [0.0 for _ in range(len(seg_classes[cat]))]
for l in seg_classes[cat]:
if (np.sum(segl == l) == 0) and (
np.sum(segp == l) == 0): # part is not present, no prediction as well
part_ious[l - seg_classes[cat][0]] = 1.0
else:
part_ious[l - seg_classes[cat][0]] = np.sum((segl == l) & (segp == l)) / float(
np.sum((segl == l) | (segp == l)))
shape_ious[cat].append(np.mean(part_ious))
all_shape_ious = []
for cat in shape_ious.keys():
for iou in shape_ious[cat]:
all_shape_ious.append(iou)
shape_ious[cat] = np.mean(shape_ious[cat])
mean_shape_ious = np.mean(list(shape_ious.values()))
test_metrics['accuracy'] = total_correct / float(total_seen)
test_metrics['class_avg_accuracy'] = np.mean(
np.array(total_correct_class) / np.array(total_seen_class, dtype=float))
test_metrics['inctance_avg_iou'] = np.mean(all_shape_ious)
test_metrics['class_avg_iou'] = mean_shape_ious
train_loss = train_loss / count
loss_cls = loss_cls / count
loss_dir_local = loss_dir_local / count
loss_dir_global = loss_dir_global / count
loss_orth_local = loss_orth_local / count
loss_orth_global = loss_orth_global / count
loss_feat_local = loss_feat_local / count
loss_feat_global = loss_feat_global / count
io.cprint('[Train %d, local loss dir: %.6f, loss orth: %.6f, loss feat: %.6f ]' % (epoch, loss_dir_local, loss_orth_local, loss_feat_local))
io.cprint('[Train %d, global loss dir: %.6f, loss orth: %.6f, loss feat: %.6f ]' % (epoch, loss_dir_global, loss_orth_global, loss_feat_global))
io.cprint('[Train %d, train loss: %.6f, cls loss: %.6f]' % (epoch, train_loss, loss_cls))
io.cprint('[Train %d, cls acc: %.6f, cls bal acc: %.6f, IoU: %.6f, mIoU: %.6f]' % (epoch, test_metrics['accuracy'], test_metrics['class_avg_accuracy'], test_metrics['inctance_avg_iou'], test_metrics['class_avg_iou']))
writer.add_scalar(tag='train_loss', step=epoch, value=train_loss)
writer.add_scalar(tag='train_acc', step=epoch, value=test_metrics['accuracy'])
writer.add_scalar(tag='train_val_acc', step=epoch, value=test_metrics['class_avg_accuracy'])
writer.add_scalar(tag='train_ious', step=epoch, value=test_metrics['inctance_avg_iou'])
writer.add_scalar(tag='train_mIoU', step=epoch, value=test_metrics['class_avg_iou'])
if args.scheduler == 'cos':
scheduler.step()
elif args.scheduler == 'step':
if opt.param_groups[0]['lr'] > 1e-6:
scheduler.step()
model.eval()
test_loss = 0.0
loss_cls = 0.0
loss_dir_local = 0.0
loss_dir_global = 0.0
loss_orth_local = 0.0
loss_orth_global = 0.0
loss_feat_local = 0.0
loss_feat_global = 0.0
count = 0.0
test_metrics = {}
total_correct = 0
total_seen = 0
total_seen_class = [0 for _ in range(num_part)]
total_correct_class = [0 for _ in range(num_part)]
shape_ious = {cat: [] for cat in seg_classes.keys()}
with torch.no_grad():
for batch_data in tqdm(test_loader, total=len(test_loader)):
data, label, seg = batch_data
batch_size, num_point,_ = data.size()
seg = seg - seg_start_index
label_one_hot = np.zeros((label.shape[0], 16))
for idx in range(label.shape[0]):
label_one_hot[idx, label[idx]] = 1
label_one_hot = torch.from_numpy(label_one_hot.astype(np.float32))
data, label_one_hot, seg = data.to(device), label_one_hot.to(device).squeeze(), seg.to(device)
trot = Rotate(R=random_rotations(batch_size)).to(device)
data = trot.transform_points(data)
loss, logits, loss_list = model(data, label_one_hot, seg, train=False)
count += batch_size
test_loss += loss.item() * batch_size
loss_cls += loss_list[0].item() * batch_size
logits = logits.detach().cpu()
cur_pred_val = logits.detach().cpu().numpy()
cur_pred_val_logits = cur_pred_val
cur_pred_val = np.zeros((batch_size, num_point)).astype(np.int32)
seg = seg.cpu().data.numpy()
for i in range(batch_size):
cat = seg_label_to_cat[seg[i, 0]]
logits = cur_pred_val_logits[i, :, :]
cur_pred_val[i, :] = np.argmax(logits[:, seg_classes[cat]], 1) + seg_classes[cat][0]
correct = np.sum(cur_pred_val == seg)
total_correct += correct
total_seen += (batch_size * num_point)
for l in range(num_part):
total_seen_class[l] += np.sum(seg == l)
total_correct_class[l] += (np.sum((cur_pred_val == l) & (seg == l)))
for i in range(batch_size):
segp = cur_pred_val[i, :]
segl = seg[i, :]
cat = seg_label_to_cat[segl[0]]
part_ious = [0.0 for _ in range(len(seg_classes[cat]))]
for l in seg_classes[cat]:
if (np.sum(segl == l) == 0) and (
np.sum(segp == l) == 0): # part is not present, no prediction as well
part_ious[l - seg_classes[cat][0]] = 1.0
else:
part_ious[l - seg_classes[cat][0]] = np.sum((segl == l) & (segp == l)) / float(
np.sum((segl == l) | (segp == l)))
shape_ious[cat].append(np.mean(part_ious))
all_shape_ious = []
for cat in shape_ious.keys():
for iou in shape_ious[cat]:
all_shape_ious.append(iou)
shape_ious[cat] = np.mean(shape_ious[cat])
mean_shape_ious = np.mean(list(shape_ious.values()))
test_metrics['accuracy'] = total_correct / float(total_seen)
test_metrics['class_avg_accuracy'] = np.mean(
np.array(total_correct_class) / np.array(total_seen_class, dtype=float))
test_metrics['inctance_avg_iou'] = np.mean(all_shape_ious)
test_metrics['class_avg_iou'] = mean_shape_ious
test_loss = test_loss / count
loss_cls = loss_cls / count
loss_dir_local = loss_dir_local / count
loss_dir_global = loss_dir_global / count
loss_orth_local = loss_orth_local / count
loss_orth_global = loss_orth_global / count
loss_feat_local = loss_feat_local / count
loss_feat_global = loss_feat_global / count
if best_acc <= test_metrics['accuracy']:
best_acc = test_metrics['accuracy']
if best_bal_acc <= test_metrics['class_avg_accuracy']:
best_bal_acc = test_metrics['class_avg_accuracy']
if best_ious <= test_metrics['inctance_avg_iou']:
best_ious = test_metrics['inctance_avg_iou']
if best_mIoU <= test_metrics['class_avg_iou']:
best_mIoU = test_metrics['class_avg_iou']
for cat in sorted(shape_ious.keys()):
io.cprint('eval mIoU of %s %f' % (cat + ' ' * (14 - len(cat)), shape_ious[cat]))
torch.save(model.state_dict(), 'checkpoints/%s/models/best_mIoU_model.pth' % args.exp_name)
writer.add_scalar(tag='test_loss', step=epoch, value=test_loss)
writer.add_scalar(tag='test_acc', step=epoch, value=test_metrics['accuracy'])
writer.add_scalar(tag='test_val_acc', step=epoch, value=test_metrics['class_avg_accuracy'])
writer.add_scalar(tag='test_ious', step=epoch, value=test_metrics['inctance_avg_iou'])
writer.add_scalar(tag='test_mIoU', step=epoch, value=test_metrics['class_avg_iou'])
io.cprint('[Test %d, cls_loss: %.6f, acc: %.6f, bal_acc: %.6f \t Best acc: %.6f, Best balanced acc: %.6f]' % (epoch, loss_cls, test_metrics['accuracy'], test_metrics['class_avg_accuracy'], best_acc, best_bal_acc))
io.cprint('[Test %d, IoU: %.6f, mIoU: %.6f\t best_IoU: %.6f, best_mIoU: %.6f]' % (epoch, test_metrics['inctance_avg_iou'], test_metrics['class_avg_iou'], best_ious, best_mIoU))
if args.test_rot=="z":
test_loss = 0.0
loss_cls = 0.0
loss_dir_local = 0.0
loss_dir_global = 0.0
loss_orth_local = 0.0
loss_orth_global = 0.0
loss_feat_local = 0.0
loss_feat_global = 0.0
count = 0.0
test_metrics = {}
total_correct = 0
total_seen = 0
total_seen_class = [0 for _ in range(num_part)]
total_correct_class = [0 for _ in range(num_part)]
shape_ious = {cat: [] for cat in seg_classes.keys()}
with torch.no_grad():
for batch_data in tqdm(test_loader, total=len(test_loader)):
data, label, seg = batch_data
batch_size, num_point,_ = data.size()
seg = seg - seg_start_index
label_one_hot = np.zeros((label.shape[0], 16))
for idx in range(label.shape[0]):
label_one_hot[idx, label[idx]] = 1
label_one_hot = torch.from_numpy(label_one_hot.astype(np.float32))
data, label_one_hot, seg = data.to(device), label_one_hot.to(device).squeeze(), seg.to(device)
trot = RotateAxisAngle(angle=torch.rand(batch_size) * 360, axis="Z", degrees=True).to(device)
data = trot.transform_points(data)
loss, logits, loss_list = model(data, label_one_hot, seg, train=False)
count += batch_size
test_loss += loss.item() * batch_size
loss_cls += loss_list[0].item() * batch_size
logits = logits.detach().cpu()
cur_pred_val = logits.detach().cpu().numpy()
cur_pred_val_logits = cur_pred_val
cur_pred_val = np.zeros((batch_size, num_point)).astype(np.int32)
seg = seg.cpu().data.numpy()
for i in range(batch_size):
cat = seg_label_to_cat[seg[i, 0]]
logits = cur_pred_val_logits[i, :, :]
cur_pred_val[i, :] = np.argmax(logits[:, seg_classes[cat]], 1) + seg_classes[cat][0]
correct = np.sum(cur_pred_val == seg)
total_correct += correct
total_seen += (batch_size * num_point)
for l in range(num_part):
total_seen_class[l] += np.sum(seg == l)
total_correct_class[l] += (np.sum((cur_pred_val == l) & (seg == l)))
for i in range(batch_size):
segp = cur_pred_val[i, :]
segl = seg[i, :]
cat = seg_label_to_cat[segl[0]]
part_ious = [0.0 for _ in range(len(seg_classes[cat]))]
for l in seg_classes[cat]:
if (np.sum(segl == l) == 0) and (
np.sum(segp == l) == 0): # part is not present, no prediction as well
part_ious[l - seg_classes[cat][0]] = 1.0
else:
part_ious[l - seg_classes[cat][0]] = np.sum((segl == l) & (segp == l)) / float(
np.sum((segl == l) | (segp == l)))
shape_ious[cat].append(np.mean(part_ious))
all_shape_ious = []
for cat in shape_ious.keys():
for iou in shape_ious[cat]:
all_shape_ious.append(iou)
shape_ious[cat] = np.mean(shape_ious[cat])
mean_shape_ious = np.mean(list(shape_ious.values()))
test_metrics['accuracy'] = total_correct / float(total_seen)
test_metrics['class_avg_accuracy'] = np.mean(
np.array(total_correct_class) / np.array(total_seen_class, dtype=float))
test_metrics['inctance_avg_iou'] = np.mean(all_shape_ious)
test_metrics['class_avg_iou'] = mean_shape_ious
loss_cls = loss_cls / count
loss_dir_local = loss_dir_local / count
loss_dir_global = loss_dir_global / count
loss_orth_local = loss_orth_local / count
loss_orth_global = loss_orth_global / count
loss_feat_local = loss_feat_local / count
loss_feat_global = loss_feat_global / count
if best_z_acc <= test_metrics['accuracy']:
best_z_acc = test_metrics['accuracy']
if best_z_bal_acc <= test_metrics['class_avg_accuracy']:
best_z_bal_acc = test_metrics['class_avg_accuracy']
if best_z_ious <= test_metrics['inctance_avg_iou']:
best_z_ious = test_metrics['inctance_avg_iou']
if best_z_mIoU <= test_metrics['class_avg_iou']:
best_z_mIoU = test_metrics['class_avg_iou']
for cat in sorted(shape_ious.keys()):
io.cprint('eval z mIoU of %s %f' % (cat + ' ' * (14 - len(cat)), shape_ious[cat]))
torch.save(model.state_dict(), 'checkpoints/%s/models/best_z_mIoU_model.pth' % args.exp_name)
io.cprint('[Test %d, z, cls_loss: %.6f, acc: %.6f, bal_acc: %.6f \t Best acc: %.6f, Best balanced acc: %.6f]' % (epoch, loss_cls, test_metrics['accuracy'], test_metrics['class_avg_accuracy'], best_acc, best_bal_acc))
io.cprint('[Test %d, z, IoU: %.6f, mIoU: %.6f\t best_IoU: %.6f, best_mIoU: %.6f]' % (epoch, test_metrics['inctance_avg_iou'], test_metrics['class_avg_iou'], best_z_ious, best_z_mIoU))
def val(args, test_loader, model, epoch, best_acc, best_bal_acc, logger, rot='z'):
model.eval()
test_loss = 0.0
count = 0.0
test_true = []
test_pred = []
loss_cls_v = 0.0
loss_dir_local_v = 0.0
loss_dir_global_v = 0.0
loss_orth_local_v = 0.0
loss_orth_global_v = 0.0
loss_angle_v = 0.0
loss_feat_local_v = 0.0
loss_feat_global_v = 0.0
with torch.no_grad():
for batch_data in tqdm(test_loader, total=len(test_loader)):
data, label = batch_data
batch_size = data.shape[0]
data, label = data.cuda(), label.cuda().squeeze()
trot = None
if rot == 'z':
trot = RotateAxisAngle(angle=torch.rand(data.shape[0]) * 360, axis="Z", degrees=True).cuda()
elif rot == 'so3':
trot = Rotate(R=random_rotations(batch_size)).to(args.device)
if trot is not None:
data = trot.transform_points(data)
loss, logits, losslist = model(data, label, train=False)
count += batch_size
loss_cls_v += loss_list[0] * batch_size
loss_dir_local_v += loss_list[1] * batch_size
loss_dir_global_v += loss_list[2] * batch_size
loss_orth_local_v += loss_list[3] * batch_size
loss_orth_global_v += loss_list[4] * batch_size
loss_angle_v += loss_list[5] * batch_size
loss_feat_local_v += loss_list[6] * batch_size
loss_feat_global_v += loss_list[7] * batch_size
test_loss += loss.item() * batch_size
logits = logits.detach().cpu()
preds = logits.max(dim=1)[1]
test_true.append(label.detach().cpu().numpy())
test_pred.append(preds.detach().cpu().numpy())
test_true = np.concatenate(test_true)
test_pred = np.concatenate(test_pred)
test_loss = test_loss / count
test_acc = accuracy_score(test_true, test_pred)
test_bal_acc = balanced_accuracy_score(test_true, test_pred)
loss_cls_v = loss_cls_v / count
loss_dir_local_v = loss_dir_local_v / count
loss_dir_global_v = loss_dir_global_v / count
loss_orth_local_v = loss_orth_local_v / count
loss_orth_global_v = loss_orth_global_v / count
loss_angle_v = loss_angle_v / count
loss_feat_local_v = loss_feat_local_v / count
loss_feat_global_v = loss_feat_global_v / count
logger.add_scalar(tag='val_z_loss', step=epoch, value=test_loss)
logger.add_scalar(tag='val_z_acc', step=epoch, value=test_acc)
logger.add_scalar(tag='val_z_bal_acc', step=epoch, value=test_bal_acc)
if best_acc <= test_acc:
best_acc = test_acc
torch.save(model.state_dict(), 'checkpoints/%s/models/best_acc_model.pth' % args.exp_name)
if best_bal_acc <= test_bal_acc:
best_bal_acc = test_bal_acc
io.cprint('[Under %s: Best acc: %.6f \t Best balanced acc: %.6f]' % (rot, best_acc, best_bal_acc))
return best_acc, best_bal_acc
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Point Cloud Recognition')
parser.add_argument('--exp_name', type=str, default='exp_seg',
help='Name of the experiment')
parser.add_argument('--mode', type=str, default='train',
choices=['train', 'test'],
help='training mode')
parser.add_argument('--class_choice', type=str, default=None, metavar='N',
choices=['airplane', 'bag', 'cap', 'car', 'chair',
'earphone', 'guitar', 'knife', 'lamp', 'laptop',
'motor', 'mug', 'pistol', 'rocket', 'skateboard', 'table'])
parser.add_argument('--batch_size', type=int, default=32,
help='Size of batch')
parser.add_argument('--test_batch_size', type=int, default=32,
help='Size of batch for test')
parser.add_argument('--epochs', type=int, default=250,
help='number of episode to train')
parser.add_argument('--use_sgd', action='store_true',
help='Use SGD')
parser.add_argument('--lr', type=float, default=0.001, metavar='LR',
help='learning rate (default: 0.0001, 0.1 if using sgd)')
parser.add_argument('--momentum', type=float, default=0.9,
help='SGD momentum (default: 0.9)')
parser.add_argument('--decay', type=float, default=1e-6, metavar='N',
help='weight_decay in optimizer(default: 1e-6 for adam, 1e-4 for sgd)')
parser.add_argument('--scheduler', type=str, default='cos', choices=['cos', 'step', 'none', 'multistep'],
help='Scheduler to use, [cos, step]')
parser.add_argument('--no_cuda', type=bool, default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--train_rot', type=str, default='z', choices=['aligned', 'z', 'so3'],
help='Rotation augmentation to input data')
parser.add_argument('--test_rot', type=str, default='z', choices=['z', 'so3'],
help='test with z & so3 [z], or so3 only [so3]')
parser.add_argument('--loss_feat_l', type=float, default=0.0, metavar='N',
help='invariant loss weight for local scale invariant feature')
parser.add_argument('--loss_feat_g', type=float, default=0.0, metavar='N',
help='invariant loss weight for global scale invariant feature')
parser.add_argument('--loss_dir_l', type=float, default=1.0, metavar='N',
help='equivariant loss weight for local scale orientation')
parser.add_argument('--loss_dir_g', type=float, default=1.0, metavar='N',
help='equivariant loss weight for global scale orientation')
parser.add_argument('--loss_orth_l', type=float, default=0.2, metavar='N',
help='loss for MSE between predicted direction')
parser.add_argument('--loss_orth_g', type=float, default=0.1, metavar='N',
help='loss for MSE between predicted direction')
parser.add_argument('--loss_cls', type=float, default=1.0, metavar='N',
help='Cross entropy loss for cls')
parser.add_argument('--num_points', type=int, default=2048, metavar='N')
parser.add_argument('--local_S', type=int, default=256,
help='Num of patches to generate (N_l)')
parser.add_argument('--k_local', type=int, default=64, metavar='N',
help='Num of nearest neighbors to use for KNN when generating local patches (k_l)')
parser.add_argument('--k_global', type=int, default=64, metavar='N',
help='Num of points sampled for global patches (N_g)')
parser.add_argument('--k_local_layer', type=int, default=16, metavar='N',
help='Num of neighbors searching for edge conv in intra-learning (k_intra)')
parser.add_argument('--dropout', type=float, default=0.4, metavar='N',
help='drop out rate')
parser.add_argument('--emb_dims', type=int, default=1024,
help='embedding dimension')
parser.add_argument('--use_ball_query', action='store_true',
help='use ball query for generation of local sacle patches')
parser.add_argument('--radius', type=float, default=0.2, metavar='N',
help='radius for ball query')
parser.add_argument('--invar_block', type=int, default=2,
help='2 or 3')
parser.add_argument('--combin_block', type=int, default=3,
help='2 or 3')
parser.add_argument('--scale1', type=int, default=3,
help='low boundary of sample scaling')
parser.add_argument('--scale2', type=int, default=4,
help='high boundary of sample scaling')
parser.add_argument('--interpolate', type=int, default=11, metavar='N',
help='')
# parser.add_argument('--det', action='store_true',
# help='use cudnn.deterministic')
args = parser.parse_args()
_init_()
np.random.seed(args.seed)
torch.manual_seed(args.seed)
io = IOStream('checkpoints/' + args.exp_name + '/run.log')
io.cprint(str(args))
args.cuda = not args.no_cuda and torch.cuda.is_available()
if args.cuda:
torch.cuda.manual_seed(args.seed)
torch.backends.cudnn.benchmark = True
# if args.det:
# torch.backends.cudnn.deterministic = True
# else:
# torch.backends.cudnn.benchmark = True
io.cprint(
'Using GPU : ' + str(torch.cuda.current_device()) + ' from ' + str(torch.cuda.device_count()) + ' devices')
else:
io.cprint('Using CPU')
torch.cuda.empty_cache()
train(args, io)
torch.cuda.empty_cache()