-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparameters.py
197 lines (185 loc) · 5.84 KB
/
parameters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import argparse
import os
class KATRINAParser(argparse.ArgumentParser):
"""
Provide an opt-producer and CLI arguement parser.
More options can be added specific by paassing this object and calling
''add_arg()'' or add_argument'' on it.
:param add_blink_args:
(default True) initializes the default arguments for BLINK package.
:param add_model_args:
(default False) initializes the default arguments for loading models,
including initializing arguments from the model.
"""
def __init__(
self, add_training_args=False, add_model_args=False,
description=' ',
):
super().__init__(
description=description,
allow_abbrev=False,
conflict_handler='resolve',
formatter_class=argparse.HelpFormatter,
)
self.blink_home = os.path.dirname(
os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
)
os.environ['BLINK_HOME'] = self.blink_home
self.add_arg = self.add_argument
self.overridable = {}
if add_model_args:
self.add_model_args()
if add_training_args:
self.add_training_args()
def add_model_args(self, args=None):
"""
Add model args.
"""
parser = self.add_argument_group("Model Arguments")
parser.add_argument(
"--max_input_length",
default=512,
type=int,
help="The maximum total input sequence length after WordPiece tokenization. \n"
"Sequences longer than this will be truncated, and sequences shorter \n"
"than this will be padded.",
)
parser.add_argument(
"--max_target_length",
default=512,
type=int,
help="The maximum total input sequence length after WordPiece tokenization. \n"
"Sequences longer than this will be truncated, and sequences shorter \n"
"than this will be padded.",
)
parser.add_argument(
"--config_name",
default=None,
type=str,
help="Pretrained config name or path if not the same as model_name",
)
parser.add_argument(
"--cache_dir",
default='hfcache',
type=str,
help="Where do you want to store the pretrained models downloaded from s3",
)
parser.add_argument(
"--tokenizer_name",
default=None,
type=str,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--model_name",
default="t5-base",
type=str,
help="path or name of model",
)
parser.add_argument(
"--eval_beams",
default=None,
type=int,
help="# num_beams to use for evaluation.",
)
def add_training_args(self, args=None):
"""
Add model args.
"""
parser = self.add_argument_group("Model Arguments")
parser.add_argument(
"--warmup_ratio",
default=0.0,
type=float,
help="The warmup ratio",
)
parser.add_argument(
"--label_smoothing",
default=0.0,
type=float,
help="The label smoothing epsilon to apply (if not zero).",
)
parser.add_argument(
"--sortish_sampler",
default=False,
type=bool,
help="Whether to SortishSamler or not.",
)
parser.add_argument(
"--predict_with_generate",
default='hfcache',
type=bool,
help="Whether to use generate to calculate generative metrics (ROUGE, BLEU).",
)
parser.add_argument(
"--train_model",
default=True,
type=bool,
help="Whether to train a model",
)
parser.add_argument(
"--output_dir",
default="out-combined-simple-limtest",
type=str,
help="Output directory",
)
parser.add_argument(
"--schema_links",
default="../qa-data/combined/train/dense_retrieval_grailqa.jsonl",
type=str,
help="Output directory",
)
parser.add_argument(
"--training_ds",
default="../qa-data/combined_qald/train",
type=str,
help="Path to training data",
)
parser.add_argument(
"--eval_ds",
default="../qa-data/combined_qald/test",
type=str,
help="Path to training data",
)
parser.add_argument(
"--use_eval_dataset",
default=False,
type=bool,
help="Wheather to use an evaluation dataset or split the training data",
)
parser.add_argument(
"--eval_ratio",
default=0.05,
type=float,
help="Path to evaluation data",
)
parser.add_argument(
"--use_freebase",
default=True,
type=bool,
help="use freebase data",
)
parser.add_argument(
"--grail_qa_file",
default="grail.json",
type=str,
help="use freebase data",
)
parser.add_argument(
"--lc_quad_file",
default="qald.json",
type=str,
help="use freebase data",
)
parser.add_argument(
"--add_entities",
default=True,
type=bool,
help="add entities in training data",
)
parser.add_argument(
"--use_wikidata",
default=True,
type=bool,
help="use wikidata data",
)