-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest_velocity.py
81 lines (68 loc) · 3.99 KB
/
test_velocity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
# -*- coding: utf-8 -*-
"""
Created on Tue Sep 29 19:25:15 2015
@author: Shamir
"""
# Calculate the number of missing values in the array
def CalculateValidData(currentFile, currentRow): # currentFile = readFile, currentRow = m
number_of_nan = len(currentFile.values[currentRow][pandas.isnull(currentFile.values[currentRow])])
length_of_array = len(currentFile.values[currentRow])
valid_datapoints = length_of_array - number_of_nan
return valid_datapoints
for i in range(len(os.listdir(sourcePath))): # we have 6 files corresponding to 6 gestures
gesture = os.listdir(sourcePath)[i] # Jab, Uppercut, Throw, Jets, Block, Asgard
copy = False
velocity_array = []
for k in range(len(os.listdir(sourcePath + gesture))):
sensor = os.listdir(sourcePath + gesture)[k]
sensorFolder = os.listdir(sourcePath + gesture + backslash + sensor)
sensorFolder = natsorted(sensorFolder)
for l in range(len(sensorFolder)):
csvfile = sourcePath + gesture + backslash + sensor + backslash + sensorFolder[l] # full filepath
readFile = pandas.read_csv(csvfile, header = None)
readFile.values[1:] = readFile.values[1:].astype(float)
number_of_rows = len(readFile.values)
number_of_columns = np.shape(readFile.values)[1]
velocity = ['Vel_' + sensor[6:] + '_' + readFile.values[0,0]]
print velocity, csvfile[-7:]
velocity = np.asarray(velocity)
distance = 0
#time = number_of_columns / frequency_quat # np.shape(readFile.values)[1]
if copy == True:
#print 'This is the If phase'
for m in range(1, number_of_rows): # for every two files
for n in range(number_of_columns - 1):
## need to add code to check if number_of_rows matches
next_index = n + 1
try:
distance += euclidean(readFile.values[m, n], readFile.values[m, next_index])
except ValueError:
#print '(copy = True) at file = ', csvfile[-6:], ', m = ', m, ', n = ', n
continue
valid_data = CalculateValidData(readFile, m) # Exclude missing values
time = valid_data / frequency_quat
vel = distance/time
velocity = np.vstack((velocity, vel))
velocity_array = np.hstack((velocity_array, velocity))
else:
#print 'This is the Else phase'
for m in range(1, number_of_rows):
for n in range(number_of_columns - 1):
next_index = n + 1
try:
distance += euclidean(readFile.values[m, n], readFile.values[m, next_index])
except ValueError:
#print '(copy = False) at file = ', csvfile[-6:], ', m = ', m, ', n = ', n
continue
valid_data = CalculateValidData(readFile, m) # Exclude missing values
time = valid_data / frequency_quat
vel = distance/time
velocity = np.vstack((velocity, vel))
velocity_array = velocity.copy()
copy = True
# Create complete file structure/dataframe
if i == 0:
fullFile3 = DataFrame(velocity_array)
else:
velocity_array = DataFrame(velocity_array)
fullFile3 = pandas.concat([fullFile3, velocity_array], join = 'inner')