forked from apache/datafusion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinsert.rs
317 lines (282 loc) · 9.6 KB
/
insert.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Execution plan for writing data to [`DataSink`]s
use super::expressions::PhysicalSortExpr;
use super::{
DisplayAs, DisplayFormatType, ExecutionPlan, Partitioning, SendableRecordBatchStream,
Statistics,
};
use arrow::datatypes::SchemaRef;
use arrow::record_batch::RecordBatch;
use arrow_array::{ArrayRef, UInt64Array};
use arrow_schema::{DataType, Field, Schema};
use async_trait::async_trait;
use core::fmt;
use datafusion_common::Result;
use datafusion_physical_expr::PhysicalSortRequirement;
use futures::StreamExt;
use std::any::Any;
use std::fmt::Debug;
use std::sync::Arc;
use crate::stream::RecordBatchStreamAdapter;
use datafusion_common::{exec_err, internal_err, DataFusionError};
use datafusion_execution::TaskContext;
/// `DataSink` implements writing streams of [`RecordBatch`]es to
/// user defined destinations.
///
/// The `Display` impl is used to format the sink for explain plan
/// output.
#[async_trait]
pub trait DataSink: DisplayAs + Debug + Send + Sync {
// TODO add desired input ordering
// How does this sink want its input ordered?
/// Writes the data to the sink, returns the number of values written
///
/// This method will be called exactly once during each DML
/// statement. Thus prior to return, the sink should do any commit
/// or rollback required.
async fn write_all(
&self,
data: Vec<SendableRecordBatchStream>,
context: &Arc<TaskContext>,
) -> Result<u64>;
}
/// Execution plan for writing record batches to a [`DataSink`]
///
/// Returns a single row with the number of values written
pub struct FileSinkExec {
/// Input plan that produces the record batches to be written.
input: Arc<dyn ExecutionPlan>,
/// Sink to which to write
sink: Arc<dyn DataSink>,
/// Schema of the sink for validating the input data
sink_schema: SchemaRef,
/// Schema describing the structure of the output data.
count_schema: SchemaRef,
/// Optional required sort order for output data.
sort_order: Option<Vec<PhysicalSortRequirement>>,
}
impl fmt::Debug for FileSinkExec {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "FileSinkExec schema: {:?}", self.count_schema)
}
}
impl FileSinkExec {
/// Create a plan to write to `sink`
pub fn new(
input: Arc<dyn ExecutionPlan>,
sink: Arc<dyn DataSink>,
sink_schema: SchemaRef,
sort_order: Option<Vec<PhysicalSortRequirement>>,
) -> Self {
Self {
input,
sink,
sink_schema,
count_schema: make_count_schema(),
sort_order,
}
}
fn execute_input_stream(
&self,
partition: usize,
context: Arc<TaskContext>,
) -> Result<SendableRecordBatchStream> {
let input_stream = self.input.execute(partition, context)?;
debug_assert_eq!(
self.sink_schema.fields().len(),
self.input.schema().fields().len()
);
// Find input columns that may violate the not null constraint.
let risky_columns: Vec<_> = self
.sink_schema
.fields()
.iter()
.zip(self.input.schema().fields().iter())
.enumerate()
.filter_map(|(i, (sink_field, input_field))| {
if !sink_field.is_nullable() && input_field.is_nullable() {
Some(i)
} else {
None
}
})
.collect();
if risky_columns.is_empty() {
Ok(input_stream)
} else {
// Check not null constraint on the input stream
Ok(Box::pin(RecordBatchStreamAdapter::new(
self.sink_schema.clone(),
input_stream
.map(move |batch| check_not_null_contraits(batch?, &risky_columns)),
)))
}
}
fn execute_all_input_streams(
&self,
context: Arc<TaskContext>,
) -> Result<Vec<SendableRecordBatchStream>> {
let n_input_parts = self.input.output_partitioning().partition_count();
let mut streams = Vec::with_capacity(n_input_parts);
for part in 0..n_input_parts {
streams.push(self.execute_input_stream(part, context.clone())?);
}
Ok(streams)
}
}
impl DisplayAs for FileSinkExec {
fn fmt_as(
&self,
t: DisplayFormatType,
f: &mut std::fmt::Formatter,
) -> std::fmt::Result {
match t {
DisplayFormatType::Default | DisplayFormatType::Verbose => {
write!(f, "InsertExec: sink=")?;
self.sink.fmt_as(t, f)
}
}
}
}
impl ExecutionPlan for FileSinkExec {
/// Return a reference to Any that can be used for downcasting
fn as_any(&self) -> &dyn Any {
self
}
/// Get the schema for this execution plan
fn schema(&self) -> SchemaRef {
self.count_schema.clone()
}
fn output_partitioning(&self) -> Partitioning {
Partitioning::UnknownPartitioning(1)
}
fn output_ordering(&self) -> Option<&[PhysicalSortExpr]> {
None
}
fn benefits_from_input_partitioning(&self) -> Vec<bool> {
// Incoming number of partitions is taken to be the
// number of files the query is required to write out.
// The optimizer should not change this number.
// Parrallelism is handled within the appropriate DataSink
vec![false]
}
fn required_input_ordering(&self) -> Vec<Option<Vec<PhysicalSortRequirement>>> {
// The input order is either exlicitly set (such as by a ListingTable),
// or require that the [FileSinkExec] gets the data in the order the
// input produced it (otherwise the optimizer may chose to reorder
// the input which could result in unintended / poor UX)
//
// More rationale:
// https://github.com/apache/arrow-datafusion/pull/6354#discussion_r1195284178
match &self.sort_order {
Some(requirements) => vec![Some(requirements.clone())],
None => vec![self
.input
.output_ordering()
.map(PhysicalSortRequirement::from_sort_exprs)],
}
}
fn maintains_input_order(&self) -> Vec<bool> {
vec![false]
}
fn children(&self) -> Vec<Arc<dyn ExecutionPlan>> {
vec![self.input.clone()]
}
fn with_new_children(
self: Arc<Self>,
children: Vec<Arc<dyn ExecutionPlan>>,
) -> Result<Arc<dyn ExecutionPlan>> {
Ok(Arc::new(Self {
input: children[0].clone(),
sink: self.sink.clone(),
sink_schema: self.sink_schema.clone(),
count_schema: self.count_schema.clone(),
sort_order: self.sort_order.clone(),
}))
}
fn unbounded_output(&self, _children: &[bool]) -> Result<bool> {
Ok(_children[0])
}
/// Execute the plan and return a stream of `RecordBatch`es for
/// the specified partition.
fn execute(
&self,
partition: usize,
context: Arc<TaskContext>,
) -> Result<SendableRecordBatchStream> {
if partition != 0 {
return internal_err!("FileSinkExec can only be called on partition 0!");
}
let data = self.execute_all_input_streams(context.clone())?;
let count_schema = self.count_schema.clone();
let sink = self.sink.clone();
let stream = futures::stream::once(async move {
sink.write_all(data, &context).await.map(make_count_batch)
})
.boxed();
Ok(Box::pin(RecordBatchStreamAdapter::new(
count_schema,
stream,
)))
}
fn statistics(&self) -> Statistics {
Statistics::default()
}
}
/// Create a output record batch with a count
///
/// ```text
/// +-------+,
/// | count |,
/// +-------+,
/// | 6 |,
/// +-------+,
/// ```
fn make_count_batch(count: u64) -> RecordBatch {
let array = Arc::new(UInt64Array::from(vec![count])) as ArrayRef;
RecordBatch::try_from_iter_with_nullable(vec![("count", array, false)]).unwrap()
}
fn make_count_schema() -> SchemaRef {
// define a schema.
Arc::new(Schema::new(vec![Field::new(
"count",
DataType::UInt64,
false,
)]))
}
fn check_not_null_contraits(
batch: RecordBatch,
column_indices: &Vec<usize>,
) -> Result<RecordBatch> {
for &index in column_indices {
if batch.num_columns() <= index {
return exec_err!(
"Invalid batch column count {} expected > {}",
batch.num_columns(),
index
);
}
if batch.column(index).null_count() > 0 {
return exec_err!(
"Invalid batch column at '{}' has null but schema specifies non-nullable",
index
);
}
}
Ok(batch)
}