-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathbackward.cu
1919 lines (1690 loc) · 64.3 KB
/
backward.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright (C) 2023, Inria
* GRAPHDECO research group, https://team.inria.fr/graphdeco
* All rights reserved.
*
* This software is free for non-commercial, research and evaluation use
* under the terms of the LICENSE.md file.
*
* For inquiries contact george.drettakis@inria.fr
*/
#include "backward.h"
#include "auxiliary.h"
#include <cooperative_groups.h>
#include <cooperative_groups/reduce.h>
namespace cg = cooperative_groups;
// Backward pass for conversion of spherical harmonics to RGB for
// each Gaussian.
__device__ void computeColorFromSH(int idx, int deg, int max_coeffs, const glm::vec3* means, glm::vec3 campos, const float* shs, const bool* clamped, const glm::vec3* dL_dcolor, glm::vec3* dL_dmeans, glm::vec3* dL_dshs)
{
// Compute intermediate values, as it is done during forward
glm::vec3 pos = means[idx];
glm::vec3 dir_orig = pos - campos;
glm::vec3 dir = dir_orig / glm::length(dir_orig);
glm::vec3* sh = ((glm::vec3*)shs) + idx * max_coeffs;
// Use PyTorch rule for clamping: if clamping was applied,
// gradient becomes 0.
glm::vec3 dL_dRGB = dL_dcolor[idx];
dL_dRGB.x *= clamped[3 * idx + 0] ? 0 : 1;
dL_dRGB.y *= clamped[3 * idx + 1] ? 0 : 1;
dL_dRGB.z *= clamped[3 * idx + 2] ? 0 : 1;
glm::vec3 dRGBdx(0, 0, 0);
glm::vec3 dRGBdy(0, 0, 0);
glm::vec3 dRGBdz(0, 0, 0);
float x = dir.x;
float y = dir.y;
float z = dir.z;
// Target location for this Gaussian to write SH gradients to
glm::vec3* dL_dsh = dL_dshs + idx * max_coeffs;
// No tricks here, just high school-level calculus.
float dRGBdsh0 = SH_C0;
dL_dsh[0] = dRGBdsh0 * dL_dRGB;
if (deg > 0)
{
float dRGBdsh1 = -SH_C1 * y;
float dRGBdsh2 = SH_C1 * z;
float dRGBdsh3 = -SH_C1 * x;
dL_dsh[1] = dRGBdsh1 * dL_dRGB;
dL_dsh[2] = dRGBdsh2 * dL_dRGB;
dL_dsh[3] = dRGBdsh3 * dL_dRGB;
dRGBdx = -SH_C1 * sh[3];
dRGBdy = -SH_C1 * sh[1];
dRGBdz = SH_C1 * sh[2];
if (deg > 1)
{
float xx = x * x, yy = y * y, zz = z * z;
float xy = x * y, yz = y * z, xz = x * z;
float dRGBdsh4 = SH_C2[0] * xy;
float dRGBdsh5 = SH_C2[1] * yz;
float dRGBdsh6 = SH_C2[2] * (2.f * zz - xx - yy);
float dRGBdsh7 = SH_C2[3] * xz;
float dRGBdsh8 = SH_C2[4] * (xx - yy);
dL_dsh[4] = dRGBdsh4 * dL_dRGB;
dL_dsh[5] = dRGBdsh5 * dL_dRGB;
dL_dsh[6] = dRGBdsh6 * dL_dRGB;
dL_dsh[7] = dRGBdsh7 * dL_dRGB;
dL_dsh[8] = dRGBdsh8 * dL_dRGB;
dRGBdx += SH_C2[0] * y * sh[4] + SH_C2[2] * 2.f * -x * sh[6] + SH_C2[3] * z * sh[7] + SH_C2[4] * 2.f * x * sh[8];
dRGBdy += SH_C2[0] * x * sh[4] + SH_C2[1] * z * sh[5] + SH_C2[2] * 2.f * -y * sh[6] + SH_C2[4] * 2.f * -y * sh[8];
dRGBdz += SH_C2[1] * y * sh[5] + SH_C2[2] * 2.f * 2.f * z * sh[6] + SH_C2[3] * x * sh[7];
if (deg > 2)
{
float dRGBdsh9 = SH_C3[0] * y * (3.f * xx - yy);
float dRGBdsh10 = SH_C3[1] * xy * z;
float dRGBdsh11 = SH_C3[2] * y * (4.f * zz - xx - yy);
float dRGBdsh12 = SH_C3[3] * z * (2.f * zz - 3.f * xx - 3.f * yy);
float dRGBdsh13 = SH_C3[4] * x * (4.f * zz - xx - yy);
float dRGBdsh14 = SH_C3[5] * z * (xx - yy);
float dRGBdsh15 = SH_C3[6] * x * (xx - 3.f * yy);
dL_dsh[9] = dRGBdsh9 * dL_dRGB;
dL_dsh[10] = dRGBdsh10 * dL_dRGB;
dL_dsh[11] = dRGBdsh11 * dL_dRGB;
dL_dsh[12] = dRGBdsh12 * dL_dRGB;
dL_dsh[13] = dRGBdsh13 * dL_dRGB;
dL_dsh[14] = dRGBdsh14 * dL_dRGB;
dL_dsh[15] = dRGBdsh15 * dL_dRGB;
dRGBdx += (
SH_C3[0] * sh[9] * 3.f * 2.f * xy +
SH_C3[1] * sh[10] * yz +
SH_C3[2] * sh[11] * -2.f * xy +
SH_C3[3] * sh[12] * -3.f * 2.f * xz +
SH_C3[4] * sh[13] * (-3.f * xx + 4.f * zz - yy) +
SH_C3[5] * sh[14] * 2.f * xz +
SH_C3[6] * sh[15] * 3.f * (xx - yy));
dRGBdy += (
SH_C3[0] * sh[9] * 3.f * (xx - yy) +
SH_C3[1] * sh[10] * xz +
SH_C3[2] * sh[11] * (-3.f * yy + 4.f * zz - xx) +
SH_C3[3] * sh[12] * -3.f * 2.f * yz +
SH_C3[4] * sh[13] * -2.f * xy +
SH_C3[5] * sh[14] * -2.f * yz +
SH_C3[6] * sh[15] * -3.f * 2.f * xy);
dRGBdz += (
SH_C3[1] * sh[10] * xy +
SH_C3[2] * sh[11] * 4.f * 2.f * yz +
SH_C3[3] * sh[12] * 3.f * (2.f * zz - xx - yy) +
SH_C3[4] * sh[13] * 4.f * 2.f * xz +
SH_C3[5] * sh[14] * (xx - yy));
}
}
}
// The view direction is an input to the computation. View direction
// is influenced by the Gaussian's mean, so SHs gradients
// must propagate back into 3D position.
glm::vec3 dL_ddir(glm::dot(dRGBdx, dL_dRGB), glm::dot(dRGBdy, dL_dRGB), glm::dot(dRGBdz, dL_dRGB));
// Account for normalization of direction
float3 dL_dmean = dnormvdv(float3{ dir_orig.x, dir_orig.y, dir_orig.z }, float3{ dL_ddir.x, dL_ddir.y, dL_ddir.z });
// Gradients of loss w.r.t. Gaussian means, but only the portion
// that is caused because the mean affects the view-dependent color.
// Additional mean gradient is accumulated in below methods.
dL_dmeans[idx] += glm::vec3(dL_dmean.x, dL_dmean.y, dL_dmean.z);
}
// Backward pass for conversion of spherical harmonics to RGB for
// each Gaussian.
__device__ void computeColorFromSH_4D(int idx, int deg, int deg_t, int max_coeffs,
const float* shs, const glm::vec3* dirs, const float* dirs_t, const float time_duration,
const glm::vec3* dL_drgb, float* dL_dshs, glm::vec3* dL_ddir, float* dL_ddir_t)
{
// Compute intermediate values, as it is done during forward
glm::vec3* sh = ((glm::vec3*)shs) + idx * max_coeffs;
glm::vec3 dir = dirs[idx];
const float dir_t = dirs_t[idx];
// Use PyTorch rule for clamping: if clamping was applied,
// gradient becomes 0.
glm::vec3 dL_dRGB = dL_drgb[idx];
glm::vec3 dRGBdx(0, 0, 0);
glm::vec3 dRGBdy(0, 0, 0);
glm::vec3 dRGBdz(0, 0, 0);
glm::vec3 dRGBdt(0, 0, 0);
// Target location for this Gaussian to write SH gradients to
glm::vec3* dL_dsh = ((glm::vec3*)dL_dshs) + idx * max_coeffs;
// No tricks here, just high school-level calculus.
float l0m0 = SH_C0;
float dRGBdsh0 = l0m0;
dL_dsh[0] = dRGBdsh0 * dL_dRGB;
if (deg > 0){
float x = dir.x;
float y = dir.y;
float z = dir.z;
float l1m1 = -1 * SH_C1 * y;
float l1m0 = SH_C1 * z;
float l1p1 = -1 * SH_C1 * x;
float dl1m1_dy = -1 * SH_C1;
float dl1m0_dz = SH_C1;
float dl1p1_dx = -1 * SH_C1;
dL_dsh[1] = l1m1 * dL_dRGB;
dL_dsh[2] = l1m0 * dL_dRGB;
dL_dsh[3] = l1p1 * dL_dRGB;
dRGBdx = dl1p1_dx * sh[3];
dRGBdy = dl1m1_dy * sh[1];
dRGBdz = dl1m0_dz * sh[2];
if (deg > 1){
float xx = x * x, yy = y * y, zz = z * z;
float xy = x * y, yz = y * z, xz = x * z;
float l2m2 = SH_C2[0] * xy;
float l2m1 = SH_C2[1] * yz;
float l2m0 = SH_C2[2] * (2.0 * zz - xx - yy);
float l2p1 = SH_C2[3] * xz;
float l2p2 = SH_C2[4] * (xx - yy);
float dl2m2_dx = SH_C2[0] * y;
float dl2m2_dy = SH_C2[0] * x;
float dl2m1_dy = SH_C2[1] * z;
float dl2m1_dz = SH_C2[1] * y;
float dl2m0_dx = -2 * SH_C2[2] * x;
float dl2m0_dy = -2 * SH_C2[2] * y;
float dl2m0_dz = 4 * SH_C2[2] * z;
float dl2p1_dx = SH_C2[3] * z;
float dl2p1_dz = SH_C2[3] * x;
float dl2p2_dx = 2 * SH_C2[4] * x;
float dl2p2_dy = -2 * SH_C2[4] * y;
dL_dsh[4] = l2m2 * dL_dRGB;
dL_dsh[5] = l2m1 * dL_dRGB;
dL_dsh[6] = l2m0 * dL_dRGB;
dL_dsh[7] = l2p1 * dL_dRGB;
dL_dsh[8] = l2p2 * dL_dRGB;
dRGBdx += (
dl2m2_dx * sh[4] + dl2m0_dx * sh[6] + dl2p1_dx * sh[7] + dl2p2_dx * sh[8]
);
dRGBdy += (
dl2m2_dy * sh[4] + dl2m1_dy * sh[5] + dl2m0_dy * sh[6] + dl2p2_dy * sh[8]
);
dRGBdz += (
dl2m1_dz * sh[5] + dl2m0_dz * sh[6] + dl2p1_dz * sh[7]
);
if (deg > 2){
float l3m3 = SH_C3[0] * y * (3 * xx - yy);
float l3m2 = SH_C3[1] * xy * z;
float l3m1 = SH_C3[2] * y * (4 * zz - xx - yy);
float l3m0 = SH_C3[3] * z * (2 * zz - 3 * xx - 3 * yy);
float l3p1 = SH_C3[4] * x * (4 * zz - xx - yy);
float l3p2 = SH_C3[5] * z * (xx - yy);
float l3p3 = SH_C3[6] * x * (xx - 3 * yy);
float dl3m3_dx = SH_C3[0] * y * 6 * x;
float dl3m3_dy = SH_C3[0] * (3 * xx - 3 * yy);
float dl3m2_dx = SH_C3[1] * yz;
float dl3m2_dy = SH_C3[1] * xz;
float dl3m2_dz = SH_C3[1] * xy;
float dl3m1_dx = -SH_C3[2] * y * 2 * x;
float dl3m1_dy = SH_C3[2] * (4 * zz - xx - 3 * yy);
float dl3m1_dz = SH_C3[2] * y * 8 * z;
float dl3m0_dx = -SH_C3[3] * z * 6 * x;
float dl3m0_dy = -SH_C3[3] * z * 6 * y;
float dl3m0_dz = SH_C3[3] * (6 * zz - 3 * xx - 3 * yy);
float dl3p1_dx = SH_C3[4] * (4 * zz - 3 * xx - yy);
float dl3p1_dy = -SH_C3[4] * x * 2 * y;
float dl3p1_dz = SH_C3[4] * x * 8 * z;
float dl3p2_dx = SH_C3[5] * z * 2 * x;
float dl3p2_dy = -SH_C3[5] * z * 2 * y;
float dl3p2_dz = SH_C3[5] * (xx - yy);
float dl3p3_dx = SH_C3[6] * (3 * xx - 3 * yy);
float dl3p3_dy = -SH_C3[6] * x * 6 * y;
dL_dsh[9] = l3m3 * dL_dRGB;
dL_dsh[10] = l3m2 * dL_dRGB;
dL_dsh[11] = l3m1 * dL_dRGB;
dL_dsh[12] = l3m0 * dL_dRGB;
dL_dsh[13] = l3p1 * dL_dRGB;
dL_dsh[14] = l3p2 * dL_dRGB;
dL_dsh[15] = l3p3 * dL_dRGB;
dRGBdx += (
dl3m3_dx * sh[9] +
dl3m2_dx * sh[10] +
dl3m1_dx * sh[11] +
dl3m0_dx * sh[12] +
dl3p1_dx * sh[13] +
dl3p2_dx * sh[14] +
dl3p3_dx * sh[15]
);
dRGBdy += (
dl3m3_dy * sh[9] +
dl3m2_dy * sh[10] +
dl3m1_dy * sh[11] +
dl3m0_dy * sh[12] +
dl3p1_dy * sh[13] +
dl3p2_dy * sh[14] +
dl3p3_dy * sh[15]
);
dRGBdz += (
dl3m2_dz * sh[10] +
dl3m1_dz * sh[11] +
dl3m0_dz * sh[12] +
dl3p1_dz * sh[13] +
dl3p2_dz * sh[14]
);
if (deg_t > 0){
float t1 = cos(2 * MY_PI * dir_t / time_duration);
float dt1_dt = sin(2 * MY_PI * dir_t / time_duration) * 2 * MY_PI / time_duration;
dL_dsh[16] = t1 * l0m0 * dL_dRGB;
dL_dsh[17] = t1 * l1m1 * dL_dRGB;
dL_dsh[18] = t1 * l1m0 * dL_dRGB;
dL_dsh[19] = t1 * l1p1 * dL_dRGB;
dL_dsh[20] = t1 * l2m2 * dL_dRGB;
dL_dsh[21] = t1 * l2m1 * dL_dRGB;
dL_dsh[22] = t1 * l2m0 * dL_dRGB;
dL_dsh[23] = t1 * l2p1 * dL_dRGB;
dL_dsh[24] = t1 * l2p2 * dL_dRGB;
dL_dsh[25] = t1 * l3m3 * dL_dRGB;
dL_dsh[26] = t1 * l3m2 * dL_dRGB;
dL_dsh[27] = t1 * l3m1 * dL_dRGB;
dL_dsh[28] = t1 * l3m0 * dL_dRGB;
dL_dsh[29] = t1 * l3p1 * dL_dRGB;
dL_dsh[30] = t1 * l3p2 * dL_dRGB;
dL_dsh[31] = t1 * l3p3 * dL_dRGB;
dRGBdt += dt1_dt * (
l0m0 * sh[16] +
l1m1 * sh[17] +
l1m0 * sh[18] +
l1p1 * sh[19] +
l2m2 * sh[20] +
l2m1 * sh[21] +
l2m0 * sh[22] +
l2p1 * sh[23] +
l2p2 * sh[24] +
l3m3 * sh[25] +
l3m2 * sh[26] +
l3m1 * sh[27] +
l3m0 * sh[28] +
l3p1 * sh[29] +
l3p2 * sh[30] +
l3p3 * sh[31]);
dRGBdx += t1 * (
dl1p1_dx * sh[19] +
dl2m2_dx * sh[20] +
dl2m0_dx * sh[22] +
dl2p1_dx * sh[23] +
dl2p2_dx * sh[24] +
dl3m3_dx * sh[25] +
dl3m2_dx * sh[26] +
dl3m1_dx * sh[27] +
dl3m0_dx * sh[28] +
dl3p1_dx * sh[29] +
dl3p2_dx * sh[30] +
dl3p3_dx * sh[31]
);
dRGBdy += t1 * (
dl1m1_dy * sh[17] +
dl2m2_dy * sh[20] +
dl2m1_dy * sh[21] +
dl2m0_dy * sh[22] +
dl2p2_dy * sh[24] +
dl3m3_dy * sh[25] +
dl3m2_dy * sh[26] +
dl3m1_dy * sh[27] +
dl3m0_dy * sh[28] +
dl3p1_dy * sh[29] +
dl3p2_dy * sh[30] +
dl3p3_dy * sh[31]
);
dRGBdz += t1 * (
dl1m0_dz * sh[18] +
dl2m1_dz * sh[21] +
dl2m0_dz * sh[22] +
dl2p1_dz * sh[23] +
dl3m2_dz * sh[26] +
dl3m1_dz * sh[27] +
dl3m0_dz * sh[28] +
dl3p1_dz * sh[29] +
dl3p2_dz * sh[30]
);
if (deg_t > 1){
float t2 = cos(2 * MY_PI * dir_t * 2 / time_duration);
float dt2_dt = sin(2 * MY_PI * dir_t * 2 / time_duration) * 2 * MY_PI * 2 / time_duration;
dL_dsh[32] = t2 * l0m0 * dL_dRGB;
dL_dsh[33] = t2 * l1m1 * dL_dRGB;
dL_dsh[34] = t2 * l1m0 * dL_dRGB;
dL_dsh[35] = t2 * l1p1 * dL_dRGB;
dL_dsh[36] = t2 * l2m2 * dL_dRGB;
dL_dsh[37] = t2 * l2m1 * dL_dRGB;
dL_dsh[38] = t2 * l2m0 * dL_dRGB;
dL_dsh[39] = t2 * l2p1 * dL_dRGB;
dL_dsh[40] = t2 * l2p2 * dL_dRGB;
dL_dsh[41] = t2 * l3m3 * dL_dRGB;
dL_dsh[42] = t2 * l3m2 * dL_dRGB;
dL_dsh[43] = t2 * l3m1 * dL_dRGB;
dL_dsh[44] = t2 * l3m0 * dL_dRGB;
dL_dsh[45] = t2 * l3p1 * dL_dRGB;
dL_dsh[46] = t2 * l3p2 * dL_dRGB;
dL_dsh[47] = t2 * l3p3 * dL_dRGB;
dRGBdt += dt2_dt * (
l0m0 * sh[32] +
l1m1 * sh[33] +
l1m0 * sh[34] +
l1p1 * sh[35] +
l2m2 * sh[36] +
l2m1 * sh[37] +
l2m0 * sh[38] +
l2p1 * sh[39] +
l2p2 * sh[40] +
l3m3 * sh[41] +
l3m2 * sh[42] +
l3m1 * sh[43] +
l3m0 * sh[44] +
l3p1 * sh[45] +
l3p2 * sh[46] +
l3p3 * sh[47]);
dRGBdx += t2 * (
dl1p1_dx * sh[35] +
dl2m2_dx * sh[36] +
dl2m0_dx * sh[38] +
dl2p1_dx * sh[39] +
dl2p2_dx * sh[40] +
dl3m3_dx * sh[41] +
dl3m2_dx * sh[42] +
dl3m1_dx * sh[43] +
dl3m0_dx * sh[44] +
dl3p1_dx * sh[45] +
dl3p2_dx * sh[46] +
dl3p3_dx * sh[47]
);
dRGBdy += t2 * (
dl1m1_dy * sh[33] +
dl2m2_dy * sh[36] +
dl2m1_dy * sh[37] +
dl2m0_dy * sh[38] +
dl2p2_dy * sh[40] +
dl3m3_dy * sh[41] +
dl3m2_dy * sh[42] +
dl3m1_dy * sh[43] +
dl3m0_dy * sh[44] +
dl3p1_dy * sh[45] +
dl3p2_dy * sh[46] +
dl3p3_dy * sh[47]
);
dRGBdz += t2 * (
dl1m0_dz * sh[34] +
dl2m1_dz * sh[37] +
dl2m0_dz * sh[38] +
dl2p1_dz * sh[39] +
dl3m2_dz * sh[42] +
dl3m1_dz * sh[43] +
dl3m0_dz * sh[44] +
dl3p1_dz * sh[45] +
dl3p2_dz * sh[46]
);
}
}
}
}
}
// The view direction is an input to the computation. View direction
// is influenced by the Gaussian's mean, so SHs gradients
// must propagate back into 3D position.
dL_ddir[idx].x = glm::dot(dRGBdx, dL_dRGB);
dL_ddir[idx].y = glm::dot(dRGBdy, dL_dRGB);
dL_ddir[idx].z = glm::dot(dRGBdz, dL_dRGB);
// Gradients of loss w.r.t. Gaussian means, but only the portion
// that is caused because the mean affects the view-dependent color.
// Additional mean gradient is accumulated in below methods.
dL_ddir_t[idx] = -glm::dot(dRGBdt, dL_dRGB);
}
__global__ void computeSH4DBackwardCUDA(int P,
int deg, int deg_t, int max_coeffs,
const float* sh, const glm::vec3* dir, const float* dir_t, const float time_duration,
const glm::vec3* dL_drgb, float* dL_dsh, glm::vec3* dL_ddir, float* dL_ddir_t)
{
auto idx = cg::this_grid().thread_rank();
if (idx >= P)
return;
computeColorFromSH_4D(
idx,
deg,
deg_t,
max_coeffs,
sh,
dir,
dir_t,
time_duration,
dL_drgb,
dL_dsh,
dL_ddir,
dL_ddir_t
);
}
void BACKWARD::computeSH4DBackward(
int P,
int deg, int deg_t, int max_coeffs,
const float* sh,
const glm::vec3* dir,
const float* dir_t,
const float time_duration,
const glm::vec3* dL_drgb,
float* dL_dsh,
glm::vec3* dL_ddir,
float* dL_ddir_t
)
{
computeSH4DBackwardCUDA << <(P + 255) / 256, 256 >> > (
P,
deg,
deg_t,
max_coeffs,
sh,
dir,
dir_t,
time_duration,
dL_drgb,
dL_dsh,
dL_ddir,
dL_ddir_t
);
}
// Backward version of INVERSE 2D covariance matrix computation
// (due to length launched as separate kernel before other
// backward steps contained in preprocess)
__global__ void computeCov2DCUDA(int P,
const float3* means,
const int* radii,
const float* cov3Ds,
const float h_x, float h_y,
const float tan_fovx, float tan_fovy,
const float* view_matrix,
const float* dL_dconics,
float3* dL_dmeans,
float* dL_dcov)
{
auto idx = cg::this_grid().thread_rank();
if (idx >= P || !(radii[idx] > 0))
return;
// Reading location of 3D covariance for this Gaussian
const float* cov3D = cov3Ds + 6 * idx;
// Fetch gradients, recompute 2D covariance and relevant
// intermediate forward results needed in the backward.
float3 mean = means[idx];
float3 dL_dconic = { dL_dconics[4 * idx], dL_dconics[4 * idx + 1], dL_dconics[4 * idx + 3] };
float3 t = transformPoint4x3(mean, view_matrix);
const float limx = 1.3f * tan_fovx;
const float limy = 1.3f * tan_fovy;
const float txtz = t.x / t.z;
const float tytz = t.y / t.z;
t.x = min(limx, max(-limx, txtz)) * t.z;
t.y = min(limy, max(-limy, tytz)) * t.z;
const float x_grad_mul = txtz < -limx || txtz > limx ? 0 : 1;
const float y_grad_mul = tytz < -limy || tytz > limy ? 0 : 1;
glm::mat3 J = glm::mat3(h_x / t.z, 0.0f, -(h_x * t.x) / (t.z * t.z),
0.0f, h_y / t.z, -(h_y * t.y) / (t.z * t.z),
0, 0, 0);
glm::mat3 W = glm::mat3(
view_matrix[0], view_matrix[4], view_matrix[8],
view_matrix[1], view_matrix[5], view_matrix[9],
view_matrix[2], view_matrix[6], view_matrix[10]);
glm::mat3 Vrk = glm::mat3(
cov3D[0], cov3D[1], cov3D[2],
cov3D[1], cov3D[3], cov3D[4],
cov3D[2], cov3D[4], cov3D[5]);
glm::mat3 T = W * J;
glm::mat3 cov2D = glm::transpose(T) * glm::transpose(Vrk) * T;
// Use helper variables for 2D covariance entries. More compact.
float a = cov2D[0][0] += 0.3f;
float b = cov2D[0][1];
float c = cov2D[1][1] += 0.3f;
float denom = a * c - b * b;
float dL_da = 0, dL_db = 0, dL_dc = 0;
float denom2inv = 1.0f / ((denom * denom) + 0.0000001f);
if (denom2inv != 0)
{
// Gradients of loss w.r.t. entries of 2D covariance matrix,
// given gradients of loss w.r.t. conic matrix (inverse covariance matrix).
// e.g., dL / da = dL / d_conic_a * d_conic_a / d_a
dL_da = denom2inv * (-c * c * dL_dconic.x + 2 * b * c * dL_dconic.y + (denom - a * c) * dL_dconic.z);
dL_dc = denom2inv * (-a * a * dL_dconic.z + 2 * a * b * dL_dconic.y + (denom - a * c) * dL_dconic.x);
dL_db = denom2inv * 2 * (b * c * dL_dconic.x - (denom + 2 * b * b) * dL_dconic.y + a * b * dL_dconic.z);
// Gradients of loss L w.r.t. each 3D covariance matrix (Vrk) entry,
// given gradients w.r.t. 2D covariance matrix (diagonal).
// cov2D = transpose(T) * transpose(Vrk) * T;
dL_dcov[6 * idx + 0] = (T[0][0] * T[0][0] * dL_da + T[0][0] * T[1][0] * dL_db + T[1][0] * T[1][0] * dL_dc);
dL_dcov[6 * idx + 3] = (T[0][1] * T[0][1] * dL_da + T[0][1] * T[1][1] * dL_db + T[1][1] * T[1][1] * dL_dc);
dL_dcov[6 * idx + 5] = (T[0][2] * T[0][2] * dL_da + T[0][2] * T[1][2] * dL_db + T[1][2] * T[1][2] * dL_dc);
// Gradients of loss L w.r.t. each 3D covariance matrix (Vrk) entry,
// given gradients w.r.t. 2D covariance matrix (off-diagonal).
// Off-diagonal elements appear twice --> double the gradient.
// cov2D = transpose(T) * transpose(Vrk) * T;
dL_dcov[6 * idx + 1] = 2 * T[0][0] * T[0][1] * dL_da + (T[0][0] * T[1][1] + T[0][1] * T[1][0]) * dL_db + 2 * T[1][0] * T[1][1] * dL_dc;
dL_dcov[6 * idx + 2] = 2 * T[0][0] * T[0][2] * dL_da + (T[0][0] * T[1][2] + T[0][2] * T[1][0]) * dL_db + 2 * T[1][0] * T[1][2] * dL_dc;
dL_dcov[6 * idx + 4] = 2 * T[0][2] * T[0][1] * dL_da + (T[0][1] * T[1][2] + T[0][2] * T[1][1]) * dL_db + 2 * T[1][1] * T[1][2] * dL_dc;
}
else
{
for (int i = 0; i < 6; i++)
dL_dcov[6 * idx + i] = 0;
}
// Gradients of loss w.r.t. upper 2x3 portion of intermediate matrix T
// cov2D = transpose(T) * transpose(Vrk) * T;
float dL_dT00 = 2 * (T[0][0] * Vrk[0][0] + T[0][1] * Vrk[0][1] + T[0][2] * Vrk[0][2]) * dL_da +
(T[1][0] * Vrk[0][0] + T[1][1] * Vrk[0][1] + T[1][2] * Vrk[0][2]) * dL_db;
float dL_dT01 = 2 * (T[0][0] * Vrk[1][0] + T[0][1] * Vrk[1][1] + T[0][2] * Vrk[1][2]) * dL_da +
(T[1][0] * Vrk[1][0] + T[1][1] * Vrk[1][1] + T[1][2] * Vrk[1][2]) * dL_db;
float dL_dT02 = 2 * (T[0][0] * Vrk[2][0] + T[0][1] * Vrk[2][1] + T[0][2] * Vrk[2][2]) * dL_da +
(T[1][0] * Vrk[2][0] + T[1][1] * Vrk[2][1] + T[1][2] * Vrk[2][2]) * dL_db;
float dL_dT10 = 2 * (T[1][0] * Vrk[0][0] + T[1][1] * Vrk[0][1] + T[1][2] * Vrk[0][2]) * dL_dc +
(T[0][0] * Vrk[0][0] + T[0][1] * Vrk[0][1] + T[0][2] * Vrk[0][2]) * dL_db;
float dL_dT11 = 2 * (T[1][0] * Vrk[1][0] + T[1][1] * Vrk[1][1] + T[1][2] * Vrk[1][2]) * dL_dc +
(T[0][0] * Vrk[1][0] + T[0][1] * Vrk[1][1] + T[0][2] * Vrk[1][2]) * dL_db;
float dL_dT12 = 2 * (T[1][0] * Vrk[2][0] + T[1][1] * Vrk[2][1] + T[1][2] * Vrk[2][2]) * dL_dc +
(T[0][0] * Vrk[2][0] + T[0][1] * Vrk[2][1] + T[0][2] * Vrk[2][2]) * dL_db;
// Gradients of loss w.r.t. upper 3x2 non-zero entries of Jacobian matrix
// T = W * J
float dL_dJ00 = W[0][0] * dL_dT00 + W[0][1] * dL_dT01 + W[0][2] * dL_dT02;
float dL_dJ02 = W[2][0] * dL_dT00 + W[2][1] * dL_dT01 + W[2][2] * dL_dT02;
float dL_dJ11 = W[1][0] * dL_dT10 + W[1][1] * dL_dT11 + W[1][2] * dL_dT12;
float dL_dJ12 = W[2][0] * dL_dT10 + W[2][1] * dL_dT11 + W[2][2] * dL_dT12;
float tz = 1.f / t.z;
float tz2 = tz * tz;
float tz3 = tz2 * tz;
// Gradients of loss w.r.t. transformed Gaussian mean t
float dL_dtx = x_grad_mul * -h_x * tz2 * dL_dJ02;
float dL_dty = y_grad_mul * -h_y * tz2 * dL_dJ12;
float dL_dtz = -h_x * tz2 * dL_dJ00 - h_y * tz2 * dL_dJ11 + (2 * h_x * t.x) * tz3 * dL_dJ02 + (2 * h_y * t.y) * tz3 * dL_dJ12;
// Account for transformation of mean to t
// t = transformPoint4x3(mean, view_matrix);
float3 dL_dmean = transformVec4x3Transpose({ dL_dtx, dL_dty, dL_dtz }, view_matrix);
// Gradients of loss w.r.t. Gaussian means, but only the portion
// that is caused because the mean affects the covariance matrix.
// Additional mean gradient is accumulated in BACKWARD::preprocess.
dL_dmeans[idx] = dL_dmean;
}
// Backward pass for the conversion of scale and rotation to a
// 3D covariance matrix for each Gaussian.
__device__ void computeCov3D(int idx, const glm::vec3 scale, float mod, const glm::vec4 rot, const float* dL_dcov, glm::vec3* dL_dscales, glm::vec4* dL_drots)
{
// Recompute (intermediate) results for the 3D covariance computation.
glm::vec4 q = rot;// / glm::length(rot);
float r = q.x;
float x = q.y;
float y = q.z;
float z = q.w;
glm::mat3 R = glm::mat3(
1.f - 2.f * (y * y + z * z), 2.f * (x * y - r * z), 2.f * (x * z + r * y),
2.f * (x * y + r * z), 1.f - 2.f * (x * x + z * z), 2.f * (y * z - r * x),
2.f * (x * z - r * y), 2.f * (y * z + r * x), 1.f - 2.f * (x * x + y * y)
);
glm::mat3 S = glm::mat3(1.0f);
glm::vec3 s = mod * scale;
S[0][0] = s.x;
S[1][1] = s.y;
S[2][2] = s.z;
glm::mat3 M = S * R;
const float* dL_dcov3D = dL_dcov + 6 * idx;
glm::vec3 dunc(dL_dcov3D[0], dL_dcov3D[3], dL_dcov3D[5]);
glm::vec3 ounc = 0.5f * glm::vec3(dL_dcov3D[1], dL_dcov3D[2], dL_dcov3D[4]);
// Convert per-element covariance loss gradients to matrix form
glm::mat3 dL_dSigma = glm::mat3(
dL_dcov3D[0], 0.5f * dL_dcov3D[1], 0.5f * dL_dcov3D[2],
0.5f * dL_dcov3D[1], dL_dcov3D[3], 0.5f * dL_dcov3D[4],
0.5f * dL_dcov3D[2], 0.5f * dL_dcov3D[4], dL_dcov3D[5]
);
// Compute loss gradient w.r.t. matrix M
// dSigma_dM = 2 * M
glm::mat3 dL_dM = 2.0f * M * dL_dSigma;
glm::mat3 Rt = glm::transpose(R);
glm::mat3 dL_dMt = glm::transpose(dL_dM);
// Gradients of loss w.r.t. scale
glm::vec3* dL_dscale = dL_dscales + idx;
dL_dscale->x = glm::dot(Rt[0], dL_dMt[0]);
dL_dscale->y = glm::dot(Rt[1], dL_dMt[1]);
dL_dscale->z = glm::dot(Rt[2], dL_dMt[2]);
dL_dMt[0] *= s.x;
dL_dMt[1] *= s.y;
dL_dMt[2] *= s.z;
// Gradients of loss w.r.t. normalized quaternion
glm::vec4 dL_dq;
dL_dq.x = 2 * z * (dL_dMt[0][1] - dL_dMt[1][0]) + 2 * y * (dL_dMt[2][0] - dL_dMt[0][2]) + 2 * x * (dL_dMt[1][2] - dL_dMt[2][1]);
dL_dq.y = 2 * y * (dL_dMt[1][0] + dL_dMt[0][1]) + 2 * z * (dL_dMt[2][0] + dL_dMt[0][2]) + 2 * r * (dL_dMt[1][2] - dL_dMt[2][1]) - 4 * x * (dL_dMt[2][2] + dL_dMt[1][1]);
dL_dq.z = 2 * x * (dL_dMt[1][0] + dL_dMt[0][1]) + 2 * r * (dL_dMt[2][0] - dL_dMt[0][2]) + 2 * z * (dL_dMt[1][2] + dL_dMt[2][1]) - 4 * y * (dL_dMt[2][2] + dL_dMt[0][0]);
dL_dq.w = 2 * r * (dL_dMt[0][1] - dL_dMt[1][0]) + 2 * x * (dL_dMt[2][0] + dL_dMt[0][2]) + 2 * y * (dL_dMt[1][2] + dL_dMt[2][1]) - 4 * z * (dL_dMt[1][1] + dL_dMt[0][0]);
// Gradients of loss w.r.t. unnormalized quaternion
float4* dL_drot = (float4*)(dL_drots + idx);
*dL_drot = float4{ dL_dq.x, dL_dq.y, dL_dq.z, dL_dq.w };//dnormvdv(float4{ rot.x, rot.y, rot.z, rot.w }, float4{ dL_dq.x, dL_dq.y, dL_dq.z, dL_dq.w });
}
__global__ void computeCov3DBackwardCUDA(int P,
const glm::vec3* scaling_xyz,
const glm::vec4* rotation_l,
const float* dL_dcov,
glm::vec3* dL_dscaling_xyz,
glm::vec4* dL_drotation_l)
{
auto idx = cg::this_grid().thread_rank();
if (idx >= P)
return;
computeCov3D(
idx,
scaling_xyz[idx],
1.0f,
rotation_l[idx],
// dL_dcov + idx * 6,
// dL_dscaling_xyz + idx,
// dL_drotation_l + idx);
dL_dcov,
dL_dscaling_xyz,
dL_drotation_l);
}
void BACKWARD::computeCov3DBackward(
int P,
const glm::vec3* scaling_xyz,
const glm::vec4* rotation_l,
const float* dL_dcov,
glm::vec3* dL_dscaling_xyz,
glm::vec4* dL_drotation_l)
{
computeCov3DBackwardCUDA << <(P + 255) / 256, 256 >> > (
P,
scaling_xyz,
rotation_l,
dL_dcov,
dL_dscaling_xyz,
dL_drotation_l);
}
// Backward pass for the conversion of scale and rotation to a
// 3D covariance matrix for each Gaussian.
__device__ void computeCov4DBackward(
const glm::vec4 scaling_xyzt,
const glm::vec4 rotation_l,
const glm::vec4 rotation_r,
const float* dL_dcov,
const glm::vec3 dL_dms,
const float dL_dcov_t,
glm::vec4 &dL_dscaling_xyzt,
glm::vec4 &dL_drotation_l,
glm::vec4 &dL_drotation_r)
{
glm::mat4 S = glm::mat4(1.0f);
S[0][0] = scaling_xyzt.x;
S[1][1] = scaling_xyzt.y;
S[2][2] = scaling_xyzt.z;
S[3][3] = scaling_xyzt.w;
const float l_l = glm::length(rotation_l);
const float a = rotation_l.x / l_l;
const float b = rotation_l.y / l_l;
const float c = rotation_l.z / l_l;
const float d = rotation_l.w / l_l;
const float l_r = glm::length(rotation_r);
const float p = rotation_r.x / l_r;
const float q = rotation_r.y / l_r;
const float r = rotation_r.z / l_r;
const float s = rotation_r.w / l_r;
glm::mat4 M_l = glm::mat4(
a, -b, -c, -d,
b, a,-d, c,
c, d, a,-b,
d,-c, b, a
);
glm::mat4 M_r = glm::mat4(
p, q, r, s,
-q, p,-s, r,
-r, s, p,-q,
-s,-r, q, p
);
// glm stores in column major
glm::mat4 R = M_r * M_l;
glm::mat4 M = S * R;
glm::mat4 Sigma = glm::transpose(M) * M;
float cov_t = Sigma[3][3];
glm::mat3 cov11 = glm::mat3(Sigma);
glm::vec3 cov12 = glm::vec3(Sigma[0][3], Sigma[1][3], Sigma[2][3]);
glm::vec3 dL_dcov12 = -glm::vec3(
dL_dcov[0] * cov12[0] + dL_dcov[1] * cov12[1] * 0.5 + dL_dcov[2] * cov12[2] * 0.5,
dL_dcov[1] * cov12[0] * 0.5 + dL_dcov[3] * cov12[1] + dL_dcov[4] * cov12[2] * 0.5,
dL_dcov[2] * cov12[0] * 0.5 + dL_dcov[4] * cov12[1] * 0.5 + dL_dcov[5] * cov12[2]
) * 2.0f / cov_t;
dL_dcov12 += dL_dms / cov_t;
float dL_dcov_t_w_ms_cov = dL_dcov_t;
float dL_dms_dot_cov12 = glm::dot(dL_dms, cov12);
dL_dcov_t_w_ms_cov += -dL_dms_dot_cov12 / (cov_t * cov_t);
dL_dcov_t_w_ms_cov += (
cov12[0] * cov12[0] * dL_dcov[0] + cov12[0] * cov12[1] * dL_dcov[1] +
cov12[0] * cov12[2] * dL_dcov[2] + cov12[1] * cov12[1] * dL_dcov[3] +
cov12[1] * cov12[2] * dL_dcov[4] + cov12[2] * cov12[2] * dL_dcov[5]
) / (cov_t * cov_t);
glm::mat4 dL_dSigma = glm::mat4(
dL_dcov[0], 0.5f * dL_dcov[1], 0.5f * dL_dcov[2], 0.5f * dL_dcov12[0],
0.5f * dL_dcov[1], dL_dcov[3], 0.5f * dL_dcov[4], 0.5f * dL_dcov12[1],
0.5f * dL_dcov[2], 0.5f * dL_dcov[4], dL_dcov[5], 0.5f * dL_dcov12[2],
0.5f * dL_dcov12[0], 0.5f * dL_dcov12[1], 0.5f * dL_dcov12[2], dL_dcov_t_w_ms_cov
);
// Compute loss gradient w.r.t. matrix M
// dSigma_dM = 2 * M
glm::mat4 dL_dM = 2.0f * M * dL_dSigma;
glm::mat4 Rt = glm::transpose(R);
glm::mat4 dL_dMt = glm::transpose(dL_dM);
// Gradients of loss w.r.t. scale
dL_dscaling_xyzt.x = glm::dot(Rt[0], dL_dMt[0]);
dL_dscaling_xyzt.y = glm::dot(Rt[1], dL_dMt[1]);
dL_dscaling_xyzt.z = glm::dot(Rt[2], dL_dMt[2]);
dL_dscaling_xyzt.w = glm::dot(Rt[3], dL_dMt[3]);
dL_dMt[0] *= scaling_xyzt.x;
dL_dMt[1] *= scaling_xyzt.y;
dL_dMt[2] *= scaling_xyzt.z;
dL_dMt[3] *= scaling_xyzt.w;
glm::mat4 dL_dml_t = dL_dMt * M_r;
glm::vec4 dL_drot_l;
dL_drot_l.x = dL_dml_t[0][0] + dL_dml_t[1][1] + dL_dml_t[2][2] + dL_dml_t[3][3];
dL_drot_l.y = dL_dml_t[0][1] - dL_dml_t[1][0] + dL_dml_t[2][3] - dL_dml_t[3][2];
dL_drot_l.z = dL_dml_t[0][2] - dL_dml_t[1][3] - dL_dml_t[2][0] + dL_dml_t[3][1];
dL_drot_l.w = dL_dml_t[0][3] + dL_dml_t[1][2] - dL_dml_t[2][1] - dL_dml_t[3][0];
glm::mat4 dL_dmr_t = M_l * dL_dMt;
glm::vec4 dL_drot_r;
dL_drot_r.x = dL_dmr_t[0][0] + dL_dmr_t[1][1] + dL_dmr_t[2][2] + dL_dmr_t[3][3];
dL_drot_r.y = -dL_dmr_t[0][1] + dL_dmr_t[1][0] + dL_dmr_t[2][3] - dL_dmr_t[3][2];
dL_drot_r.z = -dL_dmr_t[0][2] - dL_dmr_t[1][3] + dL_dmr_t[2][0] + dL_dmr_t[3][1];
dL_drot_r.w = -dL_dmr_t[0][3] + dL_dmr_t[1][2] - dL_dmr_t[2][1] + dL_dmr_t[3][0];
float4 dL_drotation_l_f = dnormvdv(float4{rotation_l.x, rotation_l.y, rotation_l.z, rotation_l.w}, float4{dL_drot_l.x, dL_drot_l.y, dL_drot_l.z, dL_drot_l.w});
float4 dL_drotation_r_f = dnormvdv(float4{rotation_r.x, rotation_r.y, rotation_r.z, rotation_r.w}, float4{dL_drot_r.x, dL_drot_r.y, dL_drot_r.z, dL_drot_r.w});
dL_drotation_l.x = dL_drotation_l_f.x;
dL_drotation_l.y = dL_drotation_l_f.y;
dL_drotation_l.z = dL_drotation_l_f.z;
dL_drotation_l.w = dL_drotation_l_f.w;
dL_drotation_r.x = dL_drotation_r_f.x;
dL_drotation_r.y = dL_drotation_r_f.y;
dL_drotation_r.z = dL_drotation_r_f.z;
dL_drotation_r.w = dL_drotation_r_f.w;
}
__global__ void computeCov4DBackwardCUDA(int P,
const glm::vec4* scaling_xyzt,
const glm::vec4* rotation_l,
const glm::vec4* rotation_r,
const float* dL_dcov,
const glm::vec3* dL_dms,
const float* dL_dcov_t,
glm::vec4* dL_dscaling_xyzt,
glm::vec4* dL_drotation_l,
glm::vec4* dL_drotation_r)
{
auto idx = cg::this_grid().thread_rank();
if (idx >= P)
return;
computeCov4DBackward(
scaling_xyzt[idx],
rotation_l[idx],
rotation_r[idx],
dL_dcov + idx * 6,
dL_dms[idx],
dL_dcov_t[idx],
dL_dscaling_xyzt[idx],
dL_drotation_l[idx],
dL_drotation_r[idx]);
}
void BACKWARD::computeCov4DBackward(
int P,
const glm::vec4* scaling_xyzt,
const glm::vec4* rotation_l,
const glm::vec4* rotation_r,
const float* dL_dcov,
const glm::vec3* dL_dms,
const float* dL_dcov_t,
glm::vec4* dL_dscaling_xyzt,
glm::vec4* dL_drotation_l,
glm::vec4* dL_drotation_r)
{
computeCov4DBackwardCUDA << <(P + 255) / 256, 256 >> > (
P,
scaling_xyzt,
rotation_l,
rotation_r,
dL_dcov,
dL_dms,
dL_dcov_t,
dL_dscaling_xyzt,
dL_drotation_l,
dL_drotation_r);
}
// Backward pass of the preprocessing steps, except
// for the covariance computation and inversion
// (those are handled by a previous kernel call)
template<int C>
__global__ void preprocessCUDA(
int P, int D, int M,
const float3* means,
const int* radii,
const float* shs,
const bool* clamped,
const glm::vec3* scales,
const glm::vec4* rotations,
const float scale_modifier,
const float* view,
const float* proj,
const glm::vec3* campos,
const float3* dL_dmean2D,
glm::vec3* dL_dmeans,
float* dL_dcolor,
float* dL_ddepth,
float* dL_dcov3D,
float* dL_dsh,
glm::vec3* dL_dscale,
glm::vec4* dL_drot)
{
auto idx = cg::this_grid().thread_rank();
if (idx >= P || !(radii[idx] > 0))
return;
float3 m = means[idx];
// Taking care of gradients from the screenspace points
float4 m_hom = transformPoint4x4(m, proj);
float m_w = 1.0f / (m_hom.w + 0.0000001f);
// Compute loss gradient w.r.t. 3D means due to gradients of 2D means
// from rendering procedure
glm::vec3 dL_dmean;
float mul1 = (proj[0] * m.x + proj[4] * m.y + proj[8] * m.z + proj[12]) * m_w * m_w;
float mul2 = (proj[1] * m.x + proj[5] * m.y + proj[9] * m.z + proj[13]) * m_w * m_w;
dL_dmean.x = (proj[0] * m_w - proj[3] * mul1) * dL_dmean2D[idx].x + (proj[1] * m_w - proj[3] * mul2) * dL_dmean2D[idx].y;
dL_dmean.y = (proj[4] * m_w - proj[7] * mul1) * dL_dmean2D[idx].x + (proj[5] * m_w - proj[7] * mul2) * dL_dmean2D[idx].y;
dL_dmean.z = (proj[8] * m_w - proj[11] * mul1) * dL_dmean2D[idx].x + (proj[9] * m_w - proj[11] * mul2) * dL_dmean2D[idx].y;
// That's the second part of the mean gradient. Previous computation
// of cov2D and following SH conversion also affects it.
dL_dmeans[idx] += dL_dmean;
// the w must be equal to 1 for view^T * [x,y,z,1]
float3 m_view = transformPoint4x3(m, view);
// Compute loss gradient w.r.t. 3D means due to gradients of depth
// from rendering procedure
glm::vec3 dL_dmean2;
float mul3 = view[2] * m.x + view[6] * m.y + view[10] * m.z + view[14];