Skip to content

Commit

Permalink
[tokenizers] Add lasttoken pooling (#3607)
Browse files Browse the repository at this point in the history
  • Loading branch information
xyang16 authored Feb 14, 2025
1 parent 714e0ad commit c6d78bc
Show file tree
Hide file tree
Showing 2 changed files with 65 additions and 1 deletion.
Original file line number Diff line number Diff line change
Expand Up @@ -177,6 +177,9 @@ private NDArray processEmbedding(NDList list, NDArray attentionMask) {
case "cls":
embedding = embedding.get(new NDIndex(":, 0"));
break;
case "lasttoken":
embedding = lastTokenPool(embedding, attentionMask);
break;
default:
throw new AssertionError("Unexpected pooling mode: " + pooling);
}
Expand Down Expand Up @@ -239,6 +242,20 @@ private static NDArray weightedMeanPool(NDArray embeddings, NDArray attentionMas
return embeddingSum.div(maskSum);
}

private static NDArray lastTokenPool(NDArray embeddings, NDArray attentionMask) {
long sum = attentionMask.get(":, -1").sum().getLong();
if (sum == attentionMask.getShape().get(0)) {
// left padding
return embeddings.get(":, -1");
}

long sequenceLength = attentionMask.sum(new int[] {1}).getLong() - 1;
long batchSize = embeddings.getShape().get(0);
embeddings = embeddings.get(":, " + sequenceLength);
NDArray index = embeddings.getManager().arange(batchSize);
return embeddings.get(index);
}

/**
* Creates a builder to build a {@code TextEmbeddingTranslator}.
*
Expand Down Expand Up @@ -313,10 +330,11 @@ public Builder optPoolingMode(String poolingMode) {
&& !"max".equals(poolingMode)
&& !"cls".equals(poolingMode)
&& !"mean_sqrt_len".equals(poolingMode)
&& !"lasttoken".equals(poolingMode)
&& !"weightedmean".equals(poolingMode)) {
throw new IllegalArgumentException(
"Invalid pooling model, must be one of [mean, max, cls, mean_sqrt_len,"
+ " weightedmean].");
+ " weightedmean, lasttoken].");
}
this.pooling = poolingMode;
return this;
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -163,6 +163,52 @@ public void testTextEmbeddingTranslator()
Assertions.assertAlmostEquals(res[0], 0.05103104);
}

// pooling_lasttokens with left padding
criteria =
Criteria.builder()
.setTypes(String.class, float[].class)
.optModelPath(modelDir)
.optArgument("blockFactory", "ai.djl.nn.OnesBlockFactory")
.optArgument("block_shapes", "(1,7,384)")
.optArgument("block_names", "last_hidden_state")
.optEngine("PyTorch")
.optArgument("tokenizer", "intfloat/e5-mistral-7b-instruct")
.optArgument("pooling", "lasttoken")
.optOption("hasParameter", "false")
.optTranslatorFactory(new TextEmbeddingTranslatorFactory())
.build();

try (ZooModel<String, float[]> model = criteria.loadModel();
Predictor<String, float[]> predictor = model.newPredictor()) {
float[] res = predictor.predict(text);
Assert.assertEquals(res.length, 384);
Assertions.assertAlmostEquals(res[0], 0.05103104);
}

// pooling_lasttokens
criteria =
Criteria.builder()
.setTypes(String.class, float[].class)
.optModelPath(modelDir)
.optArgument("blockFactory", "ai.djl.nn.OnesBlockFactory")
.optArgument("block_shapes", "(1,7,384)")
.optArgument("block_names", "last_hidden_state")
.optEngine("PyTorch")
.optArgument("tokenizer", "bert-base-uncased")
.optArgument("pooling", "lasttoken")
.optArgument("padding", "max_length")
.optArgument("maxLength", 10)
.optOption("hasParameter", "false")
.optTranslatorFactory(new TextEmbeddingTranslatorFactory())
.build();

try (ZooModel<String, float[]> model = criteria.loadModel();
Predictor<String, float[]> predictor = model.newPredictor()) {
float[] res = predictor.predict(text);
Assert.assertEquals(res.length, 384);
Assertions.assertAlmostEquals(res[0], 0.05103104);
}

// dense and layerNorm
criteria =
Criteria.builder()
Expand Down

0 comments on commit c6d78bc

Please sign in to comment.