-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatasets.py
93 lines (76 loc) · 2.78 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import os
import os.path as osp
import torch
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from PIL import Image
import torchvision.transforms as T
import torchvision.datasets as datasets
from torchvision.datasets import ImageFolder
from torchvision import transforms
def get_loaders(imgstr, batch_size=1, n_gpus=1):
"""
Load dataloaders for an image dataset, center-cropped to a resolution.
"""
if imgstr == 'UCF101':
testset= _ucf101('test')
testloader = DataLoader(testset, batch_size=batch_size // n_gpus, pin_memory=False, num_workers=4, prefetch_factor=2)
return testloader
class ucf101_val(Dataset):
def __init__(self,root,transform) -> None:
super(ucf101_val).__init__()
self.root=root
self.transform=transform
self.videos,self.labels=self.make_video(self.root)
self.target_transform=None
def make_video(self,root):
videos,labels=[],[]
for p in os.listdir(root):
la=int(p)
labels.append(la)
p=os.path.join(root,p)
videos.append(p)
return videos,labels
def loader(self,path: str):
# open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
with open(path, "rb") as f:
img = Image.open(f)
return img.convert("RGB")
def __getitem__(self, index: int):
"""
Args:
index (int): Index
Returns:
tuple: (sample, target) where target is class_index of the target class.
"""
path = self.videos[index]
target= self.labels[index]
videos=[]
for t in range(32):
sample = self.loader(os.path.join(path,str(t)+'.png'))
if self.transform is not None:
sample = self.transform(sample)
videos.append(sample)
video=torch.stack(videos)
video=video.permute(1,0,2,3)
if self.target_transform is not None:
target = self.target_transform(target)
return video, target
def __len__(self) -> int:
return len(self.videos)
def _ucf101(split: str) -> Dataset:
dataset_path ='clean_videos'
if split == "train":
return datasets.ImageFolder(os.path.join(dataset_path,'train'), transform=transforms.Compose([
transforms.RandomCrop(224, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor()
]))
elif split == "test":
# print(dataset_path)
return ucf101_val(root=dataset_path, transform=transforms.Compose([
transforms.Resize(224),
transforms.ToTensor()
]))
else:
raise Exception("Unknown split name.")