We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Select the modules to which the bug refers:
Describe the bug When I use another model and the last bn layer to reproduce the results of channel visualization:
obj_channels = Objective.channel(face_model, 'stack4_block3_3_bn', list(range(12))) imgs, obj_names = optimize(obj_channels, nb_steps=1024, optimizer=tf.keras.optimizers.Adam(0.05)) for i in range(len(classes)): plt.subplot(len(classes)//4, 4, i+1) plt.imshow(imgs[0][i]) plt.title(obj_names[i]) plt.axis('off')
it occurs bug:
--------------------------------------------------------------------------- TypeError Traceback (most recent call last) Cell In[27], line 2 1 obj_channels = Objective.channel(model, 'stack4_block3_3_bn', list(range(12))) ----> 2 imgs, obj_names = optimize(obj_channels, 3 nb_steps=1024, 4 optimizer=tf.keras.optimizers.Adam(0.05)) 6 for i in range(len(classes)): 7 plt.subplot(len(classes)//4, 4, i+1) File [~/anaconda3/envs/smdl/lib/python3.8/site-packages/xplique/features_visualizations/optim.py:112](https://vscode-remote+wsl-002bubuntu-002d22-002e04.vscode-resource.vscode-cdn.net/mnt/e/SMDL/xplique_fold/~/anaconda3/envs/smdl/lib/python3.8/site-packages/xplique/features_visualizations/optim.py:112), in optimize(objective, optimizer, nb_steps, use_fft, fft_decay, std, regularizers, image_normalizer, values_range, transformations, warmup_steps, custom_shape, save_every) 110 images_optimized = [] 111 for step_i in range(nb_steps): --> 112 grads = optimisation_step(model, inputs) 113 optimizer.apply_gradients([(-grads, inputs)]) 115 last_iteration = step_i == nb_steps - 1 File [~/anaconda3/envs/smdl/lib/python3.8/site-packages/tensorflow/python/util/traceback_utils.py:153](https://vscode-remote+wsl-002bubuntu-002d22-002e04.vscode-resource.vscode-cdn.net/mnt/e/SMDL/xplique_fold/~/anaconda3/envs/smdl/lib/python3.8/site-packages/tensorflow/python/util/traceback_utils.py:153), in filter_traceback..error_handler(*args, **kwargs) 151 except Exception as e: 152 filtered_tb = _process_traceback_frames(e.__traceback__) --> 153 raise e.with_traceback(filtered_tb) from None 154 finally: 155 del filtered_tb File /tmp/__autograph_generated_filefwi4_a_x.py:53, in outer_factory..inner_factory..tf__step(model, inputs) ... File "/home/cry/anaconda3/envs/smdl/lib/python3.8/site-packages/xplique/features_visualizations/objectives.py", line 264, in optim_func * return tf.reduce_mean(output * target, axis=axis_to_reduce) TypeError: Input 'y' of 'Mul' Op has type float32 that does not match type float16 of argument 'x'.
However, when I use it to run neuro visualization, it's ok.
I also print the model arch. :
__________________________________________________________________________________________________ Layer (type) Output Shape Param # Connected to ================================================================================================== input_1 (InputLayer) [(None, 112, 112, 3)] 0 [] zero_padding2d (ZeroPaddin (None, 114, 114, 3) 0 ['input_1[0][0]'] g2D) ......... stack4_block3_2_prelu (PRe (None, 7, 7, 512) 512 ['stack4_block3_2_bn[0][0]'] LU) zero_padding2d_98 (ZeroPad (None, 9, 9, 512) 0 ['stack4_block3_2_prelu[0][0]' ding2D) ] stack4_block3_2_conv (Conv (None, 7, 7, 512) 2359296 ['zero_padding2d_98[0][0]'] 2D) stack4_block3_3_bn (BatchN (None, 7, 7, 512) 2048 ['stack4_block3_2_conv[0][0]'] ormalization) stack4_block3_add (Add) (None, 7, 7, 512) 0 ['stack4_block2_add[0][0]', 'stack4_block3_3_bn[0][0]'] E_batchnorm (BatchNormaliz (None, 7, 7, 512) 2048 ['stack4_block3_add[0][0]'] ation) dropout (Dropout) (None, 7, 7, 512) 0 ['E_batchnorm[0][0]'] E_flatten (Flatten) (None, 25088) 0 ['dropout[0][0]'] E_dense (Dense) (None, 512) 1284505 ['E_flatten[0][0]'] 6 pre_embedding (BatchNormal (None, 512) 2048 ['E_dense[0][0]'] ization) embedding (Activation) (None, 512) 0 ['pre_embedding[0][0]'] arcface (NormDense) (None, 10177) 5210624 ['embedding[0][0]'] ================================================================================================== Total params: 70431552 (268.68 MB) Trainable params: 70362048 (268.41 MB) Non-trainable params: 69504 (271.50 KB) __________________________________________________________________________________________________
Expected behavior I want to get the channel visualization results.
The text was updated successfully, but these errors were encountered:
AntoninPoche
Successfully merging a pull request may close this issue.
Select the modules to which the bug refers:
Describe the bug
When I use another model and the last bn layer to reproduce the results of channel visualization:
it occurs bug:
However, when I use it to run neuro visualization, it's ok.
I also print the model arch. :
Expected behavior
I want to get the channel visualization results.
The text was updated successfully, but these errors were encountered: