-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
318 lines (258 loc) · 12.2 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import os
import gradio as gr
from langchain_community.vectorstores import FAISS
from langchain_openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.schema import Document
from dotenv import load_dotenv
from openai import AsyncOpenAI
import tiktoken
import asyncio
import re
import faiss
import numpy as np
import requests
import tempfile
import random
# Load environment variables from .env file
load_dotenv()
# Set your OpenAI API key from environment variable
openai_api_key = os.getenv("OPENAI_API_KEY")
client = AsyncOpenAI(api_key=openai_api_key)
# Get ElevenLabs API key from environment variable
elevenlabs_api_key = os.getenv("ELEVENLABS_API_KEY")
# Specify the voice ID
voice_id = os.getenv("ELEVENLABS_VOICE_ID")
# Load and process the transcripts
documents = []
folder_path = "transcriptions" if os.getenv("ENVIRONMENT") == "local" else "transcriptions"
def process_transcript_file(file_path):
with open(file_path, "r", encoding='utf-8') as f:
content = f.read()
# Extract video ID from filename
base_name = os.path.splitext(os.path.basename(file_path))[0]
video_id = base_name.replace("_transcription", "")
youtube_link_base = f"https://www.youtube.com/watch?v={video_id}"
# Parse the transcript content to extract entries with timestamps
lines = content.splitlines()
file_documents = []
for line in lines:
# Updated regex to match your transcript format
match = re.match(r"^\[(\d+\.\d+) - (\d+\.\d+)\]\s*(.*)$", line)
if match:
start_time = float(match.group(1))
end_time = float(match.group(2))
text = match.group(3)
# Create a Document for each transcript entry
entry = Document(
page_content=text,
metadata={
"youtube_link": youtube_link_base,
"start_time": start_time,
"end_time": end_time,
"timestamp_link": f"{youtube_link_base}&t={int(start_time)}",
"channel": os.path.basename(os.path.dirname(file_path)) # Add channel name from folder
}
)
file_documents.append(entry)
return file_documents
# Recursively walk through all subdirectories
for root, dirs, files in os.walk(folder_path):
for filename in files:
if filename.endswith(".txt"):
file_path = os.path.join(root, filename)
try:
file_documents = process_transcript_file(file_path)
documents.extend(file_documents)
print(f"Processed {file_path}: {len(file_documents)} entries")
except Exception as e:
print(f"Error processing {file_path}: {str(e)}")
# Check documents length
print(f"Total number of documents loaded: {len(documents)}")
# Continue with splitting documents if necessary
text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=50)
split_documents = text_splitter.split_documents(documents)
# Check split_documents length
print(f"Number of documents after splitting: {len(split_documents)}")
# Create OpenAI embeddings and use FAISS as the vector store for retrieval
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
print("Generating embeddings...")
# Generate embeddings and create the vector store
vector_store = FAISS.from_documents(split_documents, embeddings)
# Define the conversation history
conversation_history = []
# Function to count tokens
def count_tokens(messages):
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo")
return sum(len(encoding.encode(message['content'])) for message in messages if 'content' in message)
# Function to truncate messages to fit within the token limit
def truncate_messages(messages, max_tokens):
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo")
truncated_messages = []
total_tokens = 0
# Try to include the system message if it exists
system_message = next((msg for msg in messages if msg['role'] == 'system'), None)
if system_message:
truncated_messages.append(system_message)
total_tokens = count_tokens([system_message])
# Always include the latest user message
user_message = next(msg for msg in reversed(messages) if msg['role'] == 'user')
truncated_messages.append(user_message)
total_tokens += count_tokens([user_message])
# Add other messages if there's room, prioritizing more recent messages
for message in reversed(messages):
if message['role'] != 'system' and message != user_message:
message_tokens = count_tokens([message])
if total_tokens + message_tokens <= max_tokens:
truncated_messages.insert(1, message) # Insert after system message or at the beginning
total_tokens += message_tokens
else:
break
return truncated_messages
# Function to get dynamic threshold
def get_dynamic_threshold(scores):
if not scores:
return 0
mean_score = sum(scores) / len(scores)
return mean_score * 0.8 # You can adjust this multiplier
# Function to handle user input and generate response
async def chatbot_response(user_input, history):
global conversation_history
max_context_length = 16000 # Leave some room for the response
system_message = {"role": "system", "content": "You are a compassionate and knowledgeable mental health chatbot. Your purpose is to provide supportive, empathetic responses based on evidence-based mental health practices. You offer general guidance and coping strategies, but you always emphasize that you're not a substitute for professional mental health care. Encourage users to seek help from qualified professionals for specific mental health concerns or in crisis situations."}
messages = [system_message] + conversation_history + [{"role": "user", "content": user_input}]
relevant_docs = vector_store.similarity_search_with_score(user_input, k=3)
# Calculate dynamic threshold
scores = [score for _, score in relevant_docs]
threshold = get_dynamic_threshold(scores)
filtered_docs = []
for doc, score in relevant_docs:
if score > threshold:
filtered_docs.append((doc, score))
relevant_text = doc.page_content
start_time = doc.metadata.get("start_time", 0)
timestamp_link = doc.metadata.get("timestamp_link", "Link not found")
messages.append({
"role": "system",
"content": f"Consider this relevant information (relevance score: {score:.2f}, timestamp: {start_time}s): {relevant_text}"
})
# Check token count and break if we're approaching the limit
if count_tokens(messages) > max_context_length:
break
if filtered_docs:
messages.append({"role": "system", "content": f"Based on the above information, answer the user's question: {user_input}"})
else:
timestamp_link = "No relevant video found."
# Final truncation to ensure we're within limits
messages = truncate_messages(messages, max_context_length)
response = await client.chat.completions.create(model="gpt-3.5-turbo", messages=messages)
answer = response.choices[0].message.content
if filtered_docs:
# Get the most relevant document (highest score)
most_relevant_doc, highest_score = max(filtered_docs, key=lambda x: x[1])
timestamp_link = most_relevant_doc.metadata.get("timestamp_link", "Link not found")
start_time = most_relevant_doc.metadata.get("start_time", 0)
answer_with_link_and_description = (
f"{answer}\n\n"
f"Watch the most relevant part of the video here: {timestamp_link}"
)
else:
answer_with_link_and_description = f"{answer}\n\nNo relevant video found for this query."
# Generate speech using ElevenLabs
headers = {
"Accept": "audio/mpeg",
"xi-api-key": elevenlabs_api_key,
"Content-Type": "application/json"
}
data = {
"text": answer,
"voice_settings": {
"stability": 0.5,
"similarity_boost": 0.75
}
}
tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{voice_id}"
response = requests.post(tts_url, json=data, headers=headers)
if response.status_code == 200:
# Create a temporary file
temp_audio_file = tempfile.NamedTemporaryFile(suffix=".mp3", delete=False)
temp_audio_file.write(response.content)
temp_audio_file.close()
audio_file_path = temp_audio_file.name
else:
print(f"Error in ElevenLabs API: {response.status_code}, {response.text}")
audio_file_path = None
# Update conversation history
conversation_history.append({"role": "user", "content": user_input})
conversation_history.append({"role": "assistant", "content": answer_with_link_and_description})
conversation_history = truncate_messages(conversation_history, max_context_length // 2) # Use half the max length for history
return answer_with_link_and_description, audio_file_path
async def main_chatbot(message, history):
print(f"Main chatbot function called. Message: {message}")
response, audio_path = await chatbot_response(message, history)
history.append({"role": "human", "content": message})
history.append({"role": "assistant", "content": response})
return history, audio_path
with gr.Blocks() as demo:
chatbot = gr.Chatbot()
msg = gr.Textbox()
submit = gr.Button("Submit")
clear = gr.Button("Clear")
audio_output = gr.Audio(label="Assistant's Voice")
async def user(user_message, history):
print(f"User function called. Message: {user_message}")
return "", history + [[user_message, None]]
async def bot(history):
print(f"Bot function called. History length: {len(history)}")
if not history:
print("History is empty")
return history, None
user_message = history[-1][0]
print(f"User message: {user_message}")
bot_response, audio_path = await chatbot_response(user_message, history[:-1])
history[-1][1] = bot_response
return history, audio_path
submit.click(user, [msg, chatbot], [msg, chatbot], queue=False).then(
bot, chatbot, [chatbot, audio_output]
)
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
bot, chatbot, [chatbot, audio_output]
)
clear.click(lambda: None, None, chatbot, queue=False)
demo.launch()
CHUNK_SIZE = 10000 # Adjust as needed
def save_faiss_index(index, filepath):
faiss.write_index(index, filepath)
def load_faiss_index(filepath):
return faiss.read_index(filepath)
def process_documents_in_chunks(documents, embeddings, index_filepath):
index = None
if os.path.exists(index_filepath):
index = load_faiss_index(index_filepath)
print("Loaded existing FAISS index.")
else:
# Initialize a new index
embedding_size = len(embeddings.embed_query("test"))
index = faiss.IndexFlatL2(embedding_size)
print("Created new FAISS index.")
num_chunks = len(documents) // CHUNK_SIZE + int(len(documents) % CHUNK_SIZE > 0)
for i in range(num_chunks):
chunk_docs = documents[i*CHUNK_SIZE:(i+1)*CHUNK_SIZE]
texts = [doc.page_content for doc in chunk_docs]
metadatas = [doc.metadata for doc in chunk_docs]
# Generate embeddings for the chunk
chunk_embeddings = embeddings.embed_documents(texts)
# Convert embeddings to a numpy array
embedding_array = np.array(chunk_embeddings).astype("float32")
# Add embeddings to the index
index.add(embedding_array)
# Optionally, store metadata separately (e.g., in a list or a database)
# For simplicity, we'll assume we can retrieve documents by index
# Save the index after each chunk
save_faiss_index(index, index_filepath)
print(f"Processed chunk {i+1}/{num_chunks} and updated FAISS index.")
def random_response(message, history):
response = random.choice(["Yes", "No"])
history.append({"role": "human", "content": message})
history.append({"role": "assistant", "content": response})
return history