forked from MinkaiXu/GeoLDM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuild_geom_dataset.py
264 lines (218 loc) · 9.14 KB
/
build_geom_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import msgpack
import os
import numpy as np
import torch
from torch.utils.data import BatchSampler, DataLoader, Dataset, SequentialSampler
import argparse
from mol_gen.models.GeoLDM.qm9.data import collate as qm9_collate
def extract_conformers(args):
drugs_file = os.path.join(args.data_dir, args.data_file)
save_file = f"geom_drugs_{'no_h_' if args.remove_h else ''}{args.conformations}"
smiles_list_file = "geom_drugs_smiles.txt"
number_atoms_file = (
f"geom_drugs_n_{'no_h_' if args.remove_h else ''}{args.conformations}"
)
unpacker = msgpack.Unpacker(open(drugs_file, "rb"))
all_smiles = []
all_number_atoms = []
dataset_conformers = []
mol_id = 0
for i, drugs_1k in enumerate(unpacker):
print(f"Unpacking file {i}...")
for smiles, all_info in drugs_1k.items():
all_smiles.append(smiles)
conformers = all_info["conformers"]
# Get the energy of each conformer. Keep only the lowest values
all_energies = []
for conformer in conformers:
all_energies.append(conformer["totalenergy"])
all_energies = np.array(all_energies)
argsort = np.argsort(all_energies)
lowest_energies = argsort[: args.conformations]
for id in lowest_energies:
conformer = conformers[id]
coords = np.array(conformer["xyz"]).astype(float) # n x 4
if args.remove_h:
mask = coords[:, 0] != 1.0
coords = coords[mask]
n = coords.shape[0]
all_number_atoms.append(n)
mol_id_arr = mol_id * np.ones((n, 1), dtype=float)
id_coords = np.hstack((mol_id_arr, coords))
dataset_conformers.append(id_coords)
mol_id += 1
print("Total number of conformers saved", mol_id)
all_number_atoms = np.array(all_number_atoms)
dataset = np.vstack(dataset_conformers)
print("Total number of atoms in the dataset", dataset.shape[0])
print("Average number of atoms per molecule", dataset.shape[0] / mol_id)
# Save conformations
np.save(os.path.join(args.data_dir, save_file), dataset)
# Save SMILES
with open(os.path.join(args.data_dir, smiles_list_file), "w") as f:
for s in all_smiles:
f.write(s)
f.write("\n")
# Save number of atoms per conformation
np.save(os.path.join(args.data_dir, number_atoms_file), all_number_atoms)
print("Dataset processed.")
def load_split_data(
conformation_file, val_proportion=0.1, test_proportion=0.1, filter_size=None
):
from pathlib import Path
path = Path(conformation_file)
base_path = path.parent.absolute()
# base_path = os.path.dirname(conformation_file)
all_data = np.load(conformation_file) # 2d array: num_atoms x 5
mol_id = all_data[:, 0].astype(int)
conformers = all_data[:, 1:]
# Get ids corresponding to new molecules
split_indices = np.nonzero(mol_id[:-1] - mol_id[1:])[0] + 1
data_list = np.split(conformers, split_indices)
# Filter based on molecule size.
if filter_size is not None:
# Keep only molecules <= filter_size
data_list = [
molecule for molecule in data_list if molecule.shape[0] <= filter_size
]
assert len(data_list) > 0, "No molecules left after filter."
# CAREFUL! Only for first time run:
# perm = np.random.permutation(len(data_list)).astype('int32')
# print('Warning, currently taking a random permutation for '
# 'train/val/test partitions, this needs to be fixed for'
# 'reproducibility.')
# assert not os.path.exists(os.path.join(base_path, 'geom_permutation.npy'))
# np.save(os.path.join(base_path, 'geom_permutation.npy'), perm)
# del perm
perm = np.load(os.path.join(base_path, "geom_permutation.npy"))
data_list = [data_list[i] for i in perm]
num_mol = len(data_list)
val_index = int(num_mol * val_proportion)
test_index = val_index + int(num_mol * test_proportion)
val_data, test_data, train_data = np.split(data_list, [val_index, test_index])
return train_data, val_data, test_data
class GeomDrugsDataset(Dataset):
def __init__(self, data_list, transform=None):
"""
Args:
transform (callable, optional): Optional transform to be applied
on a sample.
"""
self.transform = transform
# Sort the data list by size
lengths = [s.shape[0] for s in data_list]
argsort = np.argsort(lengths) # Sort by decreasing size
self.data_list = [data_list[i] for i in argsort]
# Store indices where the size changes
self.split_indices = np.unique(np.sort(lengths), return_index=True)[1][1:]
def __len__(self):
return len(self.data_list)
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
sample = self.data_list[idx]
if self.transform:
sample = self.transform(sample)
return sample
class CustomBatchSampler(BatchSampler):
"""Creates batches where all sets have the same size."""
def __init__(self, sampler, batch_size, drop_last, split_indices):
super().__init__(sampler, batch_size, drop_last)
self.split_indices = split_indices
def __iter__(self):
batch = []
for idx in self.sampler:
batch.append(idx)
if len(batch) == self.batch_size or idx + 1 in self.split_indices:
yield batch
batch = []
if len(batch) > 0 and not self.drop_last:
yield batch
def __len__(self):
count = 0
batch = 0
for idx in self.sampler:
batch += 1
if batch == self.batch_size or idx + 1 in self.split_indices:
count += 1
batch = 0
if batch > 0 and not self.drop_last:
count += 1
return count
def collate_fn(batch):
batch = {
prop: qm9_collate.batch_stack([mol[prop] for mol in batch])
for prop in batch[0].keys()
}
atom_mask = batch["atom_mask"]
# Obtain edges
batch_size, n_nodes = atom_mask.size()
edge_mask = atom_mask.unsqueeze(1) * atom_mask.unsqueeze(2)
# mask diagonal
diag_mask = ~torch.eye(
edge_mask.size(1), dtype=torch.bool, device=edge_mask.device
).unsqueeze(0)
edge_mask *= diag_mask
# edge_mask = atom_mask.unsqueeze(1) * atom_mask.unsqueeze(2)
batch["edge_mask"] = edge_mask.view(batch_size * n_nodes * n_nodes, 1)
return batch
class GeomDrugsDataLoader(DataLoader):
def __init__(self, sequential, dataset, batch_size, shuffle, drop_last=False):
if sequential:
# This goes over the data sequentially, advantage is that it takes
# less memory for smaller molecules, but disadvantage is that the
# model sees very specific orders of data.
assert not shuffle
sampler = SequentialSampler(dataset)
batch_sampler = CustomBatchSampler(
sampler, batch_size, drop_last, dataset.split_indices
)
super().__init__(dataset, batch_sampler=batch_sampler)
else:
# Dataloader goes through data randomly and pads the molecules to
# the largest molecule size.
super().__init__(
dataset,
batch_size,
shuffle=shuffle,
collate_fn=collate_fn,
drop_last=drop_last,
)
class GeomDrugsTransform(object):
def __init__(self, dataset_info, include_charges, device, sequential):
self.atomic_number_list = torch.Tensor(dataset_info["atomic_nb"])[None, :]
self.device = device
self.include_charges = include_charges
self.sequential = sequential
def __call__(self, data):
n = data.shape[0]
new_data = {}
new_data["positions"] = torch.from_numpy(data[:, -3:])
atom_types = torch.from_numpy(data[:, 0].astype(int)[:, None])
one_hot = atom_types == self.atomic_number_list
new_data["one_hot"] = one_hot
if self.include_charges:
new_data["charges"] = torch.zeros(n, 1, device=self.device)
else:
new_data["charges"] = torch.zeros(0, device=self.device)
new_data["atom_mask"] = torch.ones(n, device=self.device)
if self.sequential:
edge_mask = torch.ones((n, n), device=self.device)
edge_mask[~torch.eye(edge_mask.shape[0], dtype=torch.bool)] = 0
new_data["edge_mask"] = edge_mask.flatten()
return new_data
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--conformations",
type=int,
default=30,
help="Max number of conformations kept for each molecule.",
)
parser.add_argument(
"--remove_h", action="store_true", help="Remove hydrogens from the dataset."
)
parser.add_argument("--data_dir", type=str, default="~/diffusion/data/geom/")
parser.add_argument("--data_file", type=str, default="drugs_crude.msgpack")
args = parser.parse_args()
extract_conformers(args)