forked from felixgwu/img_classification_pk_pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
112 lines (90 loc) · 4.01 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
from __future__ import print_function
from __future__ import division
from __future__ import absolute_import
import torch
from utils import AverageMeter, adjust_learning_rate, error
import time
class Trainer(object):
def __init__(self, model, criterion=None, optimizer=None, args=None):
self.model = model
self.criterion = criterion
self.optimizer = optimizer
self.args = args
def train(self, train_loader, epoch):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to train mode
self.model.train()
lr = adjust_learning_rate(self.optimizer, self.args.lr,
self.args.decay_rate, epoch,
self.args.epochs) # TODO: add custom
print('Epoch {:3d} lr = {:.6e}'.format(epoch, lr))
end = time.time()
for i, (input, target) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
target = target.cuda(async=True)
input_var = torch.autograd.Variable(input)
target_var = torch.autograd.Variable(target)
# compute output
output = self.model(input_var)
loss = self.criterion(output, target_var)
# measure error and record loss
err1, err5 = error(output.data, target, topk=(1, 5))
losses.update(loss.data[0], input.size(0))
top1.update(err1[0], input.size(0))
top5.update(err5[0], input.size(0))
# compute gradient and do SGD step
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if self.args.print_freq > 0 and \
(i + 1) % self.args.print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.avg:.3f}\t'
'Data {data_time.avg:.3f}\t'
'Loss {loss.val:.4f}\t'
'Err@1 {top1.val:.4f}\t'
'Err@5 {top5.val:.4f}'.format(
epoch, i + 1, len(train_loader),
batch_time=batch_time, data_time=data_time,
loss=losses, top1=top1, top5=top5))
print('Epoch: {:3d} Train loss {loss.avg:.4f} '
'Err@1 {top1.avg:.4f}'
' Err@5 {top5.avg:.4f}'
.format(epoch, loss=losses, top1=top1, top5=top5))
return losses.avg, top1.avg, top5.avg, lr
def test(self, val_loader, epoch, silence=False):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
self.model.eval()
end = time.time()
for i, (input, target) in enumerate(val_loader):
target = target.cuda(async=True)
input_var = torch.autograd.Variable(input, volatile=True)
target_var = torch.autograd.Variable(target, volatile=True)
# compute output
output = self.model(input_var)
loss = self.criterion(output, target_var)
# measure error and record loss
err1, err5 = error(output.data, target, topk=(1, 5))
losses.update(loss.data[0], input.size(0))
top1.update(err1[0], input.size(0))
top5.update(err5[0], input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if not silence:
print('Epoch: {:3d} val loss {loss.avg:.4f} Err@1 {top1.avg:.4f}'
' Err@5 {top5.avg:.4f}'.format(epoch, loss=losses,
top1=top1, top5=top5))
return losses.avg, top1.avg, top5.avg