-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
61 lines (49 loc) · 2.38 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
from network import VDSR
from utils import *
import argparse
def check_phase(args):
args.phase = args.phase.lower()
assert args.phase == 'train' or args.phase == 'test', 'Choose TRAIN or TEST phase'
def check_channel(args):
args.channel = args.channel.lower()
assert args.channel == 'y' or args.channel == 'rgb' or args.channel == 'ycbcr', 'Color Channel Should be Y(in YCbCr) or RGB'
if args.channel == 'ycbcr':
args.num_channel = 3
else:
args.num_channel = len(args.channel)
return args
def check_args(args):
check_phase(args)
args = check_channel(args)
args.train_scale = str2int_list(args.train_scale)
return args
def parse_args():
desc = "Tensorflow implementation of VDSR"
parser = argparse.ArgumentParser(description=desc)
parser.add_argument('--phase', type=str, default='train', help='train or test?')
parser.add_argument('--channel', type=str, default='Y', help='RGB or Y or YCbCr')
parser.add_argument('--depth', type=int, default=20, help='The number of nework depth')
parser.add_argument('--train_scale', type=str, default='2,3,4', help='Training Super-Resolution Scale')
parser.add_argument('--test_scale', type=int, default=2, help='Testing Super-Resolution Scale')
parser.add_argument('--epoch', type=int, default=80, help='The number of epochs to run')
parser.add_argument('--batch_size', type=int, default=64, help='The size of batch per gpu')
parser.add_argument('--lr', type=float, default=0.1, help='learning rate')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
parser.add_argument('--grad_clip', type=float, default=0.001, help='the gradient clipping param')
parser.add_argument('--val_interval', type=int, default=100, help='The validation interval')
parser.add_argument('--checkpoint_dir', type=str, default='checkpoint',
help='Directory name to save the checkpoints')
parser.add_argument('--log_dir', type=str, default='logs',
help='Directory name to save training logs')
return check_args(parser.parse_args())
if __name__ == '__main__':
args = parse_args()
print(args)
# quit()
with tf.Session() as sess:
cnn = VDSR(sess, args)
cnn.build_model()
show_all_variables()
if(args.phase == 'train'):
cnn.train()
cnn.test()